- Эллипс
-
Не следует путать с Эллипсис.
Э́ллипс (др.-греч. ἔλλειψις — опущение, недостаток, в смысле недостатка эксцентриситета до 1) — геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний до двух данных точек и (называемых фокусами) постоянна и больше расстояния между фокусами, то есть
- причем
Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой.
Эллипс также можно описать как пересечение плоскости и кругового цилиндра или как ортогональную проекцию окружности на плоскость.
Содержание
Связанные определения
- Проходящий через фокусы эллипса отрезок AB, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a в вышеприведённом уравнении.
- Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
- Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.
- Точка пересечения большой и малой осей эллипса называется его центром.
- Расстояния и от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
- Расстояние называется фокальным расстоянием.
- Величина называется эксцентриситетом.
- Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.
- Радиус эллипса в данной точке (расстояние от его центра до данной точки) вычисляется по формуле , где — угол между радиус-вектором данной точки и осью абсцисс.
- Фокальным параметром называется половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса.
- Отношение длин малой и большой полуосей называется коэффициентом сжатия эллипса или эллиптичностью: Величина, равная называется сжатием эллипса. Для окружности коэффициент сжатия равен единице, сжатие — нулю. Коэффициент сжатия и эксцентриситет эллипса связаны соотношением
- Для каждого из фокусов существует прямая, называемая директрисой, такая, что отношение расстояния от произвольной точки эллипса до его фокуса к расстоянию от этой точки до данной прямой равно эксцентриситету эллипса. Весь эллипс лежит по ту же сторону от такой прямой, что и фокус. Уравнения директрис эллипса в каноническом виде записываются как для фокусов соответственно. Расстояние между фокусом и директрисой равно
Свойства
- Оптические
- Свет от источника, находящегося в одном из фокусов, отражается эллипсом так, что отраженные лучи пересекутся во втором фокусе.
- Свет от источника, находящегося вне любого фокусов, отражается эллипсом так, что отраженные лучи ни в каком фокусе не пересекутся.
- Если и — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой равен углу между этой касательной и прямой .
- Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
- Эволютой эллипса является астроида.
- Точки пересечения эллипса с осями являются его вершинами.
- Эксцентриситет эллипса равен отношению Эксцентриситет характеризует вытянутость эллипса. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.
- Эллипс также можно описать как
- фигуру, которую можно получить из окружности, применяя аффинное преобразование
- ортогональную проекцию окружности на плоскость.
- Пересечение плоскости и кругового цилиндра
Соотношения между элементами эллипса
- — большая полуось;
- — малая полуось;
- — фокальный радиус (полурасстояние между фокусами);
- — фокальный параметр;
- — перифокусное расстояние (минимальное расстояние от фокуса до точки на эллипсе);
- — апофокусное расстояние (максимальное расстояние от фокуса до точки на эллипсе);
.
– большая полуось – малая полуось – фокальное расстояние – фокальный параметр – перифокусное расстояние – апофокусное расстояние Координатное представление
Эллипс как кривая второго порядка
Эллипс является центральной невырожденной кривой второго порядка и удовлетворяет общему уравнению вида
при инвариантах и где:
Соотношения между инвариантами кривой второго порядка и полуосями эллипса:
Каноническое уравнение
Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):
Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат.
СоотношенияДля определённости положим, что В этом случае величины и — соответственно, большая и малая полуоси эллипса.
Зная полуоси эллипса можно вычислить его фокальное расстояние и эксцентриситет:
Координаты фокусов эллипса:
Эллипс имеет две директрисы, уравнения которых можно записать как
Фокальный параметр (т.е. половина длины хорды, проходящей через фокус и перпендикулярной оси эллипса) равен
Фокальные радиусы, т. е. расстояния от фокусов до произвольной точки кривой
Уравнение диаметра, сопряжённого хордам с угловым коэффициентом :
Уравнение касательной к эллипсу в точке имеет вид
Условие касания прямой и эллипса записывается в виде соотношения
Уравнение касательных, проходящих через точку
Уравнение касательных, имеющих данный угловой коэффициент :
Уравнение нормали в точке
Уравнения в параметрической форме
Каноническое уравнение эллипса может быть параметризовано:
где — параметр уравнения.
В случае окружности параметр является углом между радиус-вектором данной точки и положительным направлением оси абсцисс.
В полярных координатах
Если принять фокус эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах будет иметь вид
где e — эксцентриситет, а p — фокальный параметр. При положительном знаке перед e второй фокус эллипса будет находиться в точке а при отрицательном — в точке где фокальное расстояние
ВыводПусть r1 и r2 — расстояния до данной точки эллипса от первого и второго фокусов. Пусть также полюс системы координат находится в первом фокусе, а угол отсчитывается от направления на второй полюс. Тогда, из определения эллипса,
Отсюда,
С другой стороны, из теоремы косинусов
Исключая из последних двух уравнений, получаем
Учитывая, что
получаем искомое уравнение.
Если принять центр эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах будет иметь вид
Длина дуги эллипса
Длина дуги плоской линии определяется по формуле:
Воспользовавшись параметрическим представлением эллипса получаем следующее выражение:
После замены выражение для длины дуги принимает окончательный вид:
Получившийся интеграл принадлежит семейству эллиптических интегралов, которые в элементарных функциях не выражаются, и сводится к эллиптическому интегралу второго рода . В частности, периметр эллипса равен:
- ,
где — полный эллиптический интеграл второго рода.
Приближённые формулы для периметра
Максимальная погрешность этой формулы ~0,63 % при эксцентриситете эллипса ~0,988 (соотношение осей ~1/6,5). Погрешность всегда положительная.
Приблизительно в два раза меньшие погрешности в широком диапазоне эксцентриситетов дает формула:
, где
Максимальная погрешность этой формулы ~0,36 % при эксцентриситете эллипса ~0,980 (соотношение осей ~1/5). Погрешность также всегда положительная.
Cущественно лучшую точность при обеспечивает формула Рамануджана:
При эксцентриситете эллипса ~0,980 (соотношение осей ~1/5) погрешность составляет ~0,02 %. Погрешность всегда отрицательная.
Площадь эллипса и его сегмента
Площадь эллипса вычисляется по формуле
Площадь сегмента между дугой, выпуклой влево, и хордой, проходящей через точки и
Если эллипс задан уравнением , то площадь можно определить по формуле
- .
Построение эллипса
Основная статья — статья «Построение эллипса» в Викиучебнике.
Инструментами для рисования эллипса являются:
- эллипсограф;
- две иголки, воткнутые в фокусы эллипса и соединённые ниткой длиной 2a, которую оттягивают карандашом.
При помощи циркуля или циркуля и линейки можно построить любое количество точек, принадлежащих эллипсу, но не весь эллипс целиком.
См. также
- Кривая второго порядка
- Парабола
- Каустика
- Эллипсоид
- Эллипсограф
- Кривая постоянной разности расстояний между двумя точками — гипербола,
- постоянного отношения — окружность Аполлония,
- постоянного произведения — овал Кассини.
Литература
- Корн Г., Корн Т. Свойства окружностей, эллипсов, гипербол и парабол // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 70—73.
Ссылки
Эллипс в Викисловаре? Эллипс на Викискладе? - А. В. Акопян, А. А. Заславский. Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
- И. Бронштейн. Эллипс // Квант, № 9, 1970.
- А. И. Маркушевич. Замечательные кривые // «Популярные лекции по математике», выпуск 4.
- S.Sykora, Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae
- Grard P. Michon. Perimeter of an Ellipse (Final Answers), 2000-2005. — 20 c.
- Видео: Как нарисовать эллипс
Конические сечения Главные типы Эллипс • Гипербола • Парабола Вырожденные Точка • Прямая • Пара прямых Частный случай эллипса Окружность Геометрическое построение Коническое сечение • Шары Данделена См. также Коническая константа Математика • Геометрия Категории:- Конические сечения
- Кривые
- Планиметрия
- Стереометрия
Wikimedia Foundation. 2010.