Кислород


Кислород
8 АзотКислородФтор
Водород Гелий Литий Бериллий Бор Углерод Азот Кислород Фтор Неон Натрий Магний Алюминий Кремний Фосфор Сера Хлор Аргон Калий Кальций Скандий Титан Ванадий Хром Марганец Железо Кобальт Никель Медь Цинк Галлий Германий Мышьяк Селен Бром Криптон Рубидий Стронций Иттрий Цирконий Ниобий Молибден Технеций Рутений Родий Палладий Серебро Кадмий Индий Олово Сурьма Теллур Иод Ксенон Цезий Барий Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций Гафний Тантал Вольфрам Рений Осмий Иридий Платина Золото Ртуть Таллий Свинец Висмут Полоний Астат Радон Франций Радий Актиний Торий Протактиний Уран Нептуний Плутоний Америций Кюрий Берклий Калифорний Эйнштейний Фермий Менделевий Нобелий Лоуренсий Резерфордий Дубний Сиборгий Борий Хассий Мейтнерий Дармштадтий Рентгений Коперниций Унунтрий Флеровий Унунпентий Ливерморий Унунсептий УнуноктийПериодическая система элементов
8O
Cubic.svg
Electron shell 008 Oxygen.svg
Внешний вид простого вещества
Жидкий кислород Газ без цвета, вкуса и запаха;
голубоватая жидкость
(при низких температурах)
Свойства атома
Имя, символ, номер

Кислоро́д / Oxygenium (Oxygen)(O), 8

Атомная масса
(молярная масса)

15,9994 а. е. м. (г/моль)

Электронная конфигурация

[He] 2s2 2p4

Радиус атома

60 (48) пм

Химические свойства
Ковалентный радиус

73 пм

Радиус иона

132 (-2e) пм

Электроотрицательность

3,44 (шкала Полинга)

Электродный потенциал

0

Степени окисления

-2, −1, , -⅓, 0, ½, +1, +2

Энергия ионизации
(первый электрон)

1313,1 (13,61) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

0,00142897 г/см³

Температура плавления

54,8 К (-218,35 °C)

Температура кипения

90,19 К (-182,96 °C)

Теплота плавления

0,444 кДж/моль

Теплота испарения

3,4099 кДж/моль кДж/моль

Молярная теплоёмкость

29,4[1] Дж/(K·моль)

Молярный объём

14,0 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

моноклинная

Параметры решётки

a=5,403 b=3,429 c=5,086 β=135,53 Å

Температура Дебая

155 K

Прочие характеристики
Теплопроводность

(300 K) 0,027 Вт/(м·К)

8
Кислород
O
15,999
2s22p4

Кислоро́д — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O (лат. Oxygenium). Кислород — химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях — газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) — при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).

Содержание

История открытия

Официально считается[2][3], что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

\mathsf{ 2HgO \ \xrightarrow{^ot} \ 2Hg + O_2 \uparrow}

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς — «кислый» и γεννάω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

Нахождение в природе

Кислород — самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

\mathsf{ 2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2 \uparrow }

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):

\mathsf{ 2H_2O_2 \ \xrightarrow{MnO_2} \ 2H_2O + O_2 \uparrow }

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

\mathsf{ 2KClO_3 \rightarrow 2KCl + 3O_2 \uparrow}

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при τ = 100 °C):

\mathsf{ 2HgO \rightarrow 2Hg + O_2 \uparrow }

Физические свойства

Холодная вода содержит больше растворенного O2.

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Твёрдый кислород (температура плавления −218,35°C) — синие кристаллы. Известны шесть кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°[4].
  • β2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°[4].
  • γ2 — существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å[4].

Ещё три фазы образуются при высоких давлениях:

  • δ2 интервал температур 20-240 К и давление 6-8 ГПа, оранжевые кристаллы;
  • ε4 давление от 10 и до 96 ГПа, цвет кристаллов от тёмно-красного до чёрного, моноклинная сингония;
  • ζn давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.

Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

~\mathsf{ 4Li + O_2 \rightarrow 2Li_2O }
~\mathsf{ 2Sr + O_2 \rightarrow 2SrO }

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

~\mathsf{ 2NO + O_2 \rightarrow 2NO_2 \uparrow }

Окисляет большинство органических соединений:

~\mathsf{ CH_3CH_2OH + 3O_2 \rightarrow 2CO_2 + 3H_2O }

При определённых условиях можно провести мягкое окисление органического соединения:

~\mathsf{ CH_3CH_2OH + O_2 \rightarrow CH_3COOH + H_2O }

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #фториды кислорода).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

  • Например, пероксиды получаются при сгорании щелочных металлов в кислороде:
~\mathsf{ 2Na + O_2 \rightarrow Na_2O_2 }
  • Некоторые оксиды поглощают кислород:
~\mathsf{ 2BaO + O_2 \rightarrow 2BaO_2 }
  • По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется перекись водорода:
~\mathsf{ H_2 + O_2 \rightarrow H_2O_2 }
  • В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:
~\mathsf{ Na_2O_2 + O_2 \rightarrow 2NaO_2 }
  • Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:
~\mathsf{ K + O_2 \rightarrow KO_2 }
  • Озониды содержат ион O3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:
~\mathsf{ KOH + O_3 \rightarrow KO_3+ H_2O + O_2 \uparrow }
  • В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:
~\mathsf{ PtF_6 + O_2 \rightarrow O_2PtF_6 }

Фториды кислорода

  • Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:
~\mathsf{ 2F_2 + 2NaOH \rightarrow 2NaF + H_2O + OF_2 \uparrow }
~\mathsf{ F_2 + O_2 \rightarrow O_2F_2 }
  • Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.
  • Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония (англ.)[5] OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон).

Применение

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки. Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха. Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 ати. Объём кислорода в этом случае равен 100 × 2 = 200 литров[6].

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948[7], как пропеллент и упаковочный газ.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, — окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), аммиака в окислы азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горение.

В сельском хозяйстве

В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

Биологическая роль кислорода

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15O применяется для исследований скорости кровотока, лёгочной вентиляции.

Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, перекись водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), перекись водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

Изотопы

Кислород имеет три устойчивых изотопа: 16О, 17О и 18О, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16О связано с тем, что ядро атома 16О состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода: от 12О до 24О. Все радиоактивные изотопы кислорода имеют малый период полураспада, а 12O распадается за 5,8·10−22 секунды.

См. также

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 387. — 671 с. — 100 000 экз.
  2. J. Priestley, Experiments and Observations on Different Kinds of Air, 1776.
  3. W. Ramsay, The Gases of the Atmosphere (the History of Their Discovery), Macmillan and Co, London, 1896.
  4. 1 2 3 Inorganic Crystal Structure Database
  5. Margaret-Jane Crawford и Thomas M. Klapötke The trifluorooxonium cation, OF3+ (англ.) // Journal of Fluorine Chemistry. — 1999. — В. 2. — Т. 99. — С. 151-156. — DOI:10.1016/S0022-1139(99)00139-6
  6. Руководство для врачей скорой помощи / Михайлович В. А. — 2-е изд., перераб. и доп. — Л.: Медицина, 1990. — С. 28-33. — 544 с. — 120 000 экз. — ISBN 5-225-01503-4
  7. Food-Info.net : E-numbers : E948 : Oxygen.

Ссылки


Wikimedia Foundation. 2010.

Синонимы:

Смотреть что такое "Кислород" в других словарях:

  • КИСЛОРОД — ( Охуgenum ). Бесцветный газ без запаха и вкуса. Мало растворим в воде (приблизительно 1:43). Ингаляциями кислорода широко пользуются при различных заболеваниях, сопровождающихся гипоксией: при заболеваниях органов дыхания (пневмония, отек легких …   Словарь медицинских препаратов

  • КИСЛОРОД — (Oxygenium), О, химический элемент VI группы периодической системы, атомный номер 8, атомная масса 15,9994; газ, tкип 182,962шC. Кислород наиболее распространенный элемент, в атмосфере 23,10% по массе свободного кислорода, в гидросфере и… …   Современная энциклопедия

  • КИСЛОРОД — (лат. Oxygenium) О, химический элемент VI группы периодической системы, атомный номер 8, атомная масса 15,9994. В свободном виде встречается в виде двух модификаций О2 ( обычный кислород) и О3 (озон). О2 газ без цвета и запаха, плотность 1,42897… …   Большой Энциклопедический словарь

  • КИСЛОРОД — КИСЛОРОД, самый легкий элемент VI группы периодической системы Менделеева, симв. О, порядковый номер 8. К. газ без цвета, запаха и вкуса. Изотопов не имеет. Ат. в. 16,000, мол. в. 32,000. Уд. в. К. по отношению к воздуху 1,10535; при 0° и 760 …   Большая медицинская энциклопедия

  • Кислород — самый распространенный элемент земной коры. Содер. его составляет 49,13 по весу и 91,8% по объему. В литосфере содер. 47% К. по весу, в гидросфере 85,89% и в атмосфере 23,01%. Подавляющая часть атомов К. (около 99,99%) имеет высокую хим.… …   Геологическая энциклопедия

  • КИСЛОРОД — (символ О), обычно газообразный химический элемент, необходимый для ДЫХАНИЯ растений и животных и для горения. Был открыт в 1774 г. Джозефом ПРИСТЛИ и независимо от него Карлом ШЕЕЛЕ (около 1772 г.). Газ без вкуса и запаха, являющийся самым… …   Научно-технический энциклопедический словарь

  • КИСЛОРОД — (Oxygenium), O, хим. элемент VI группы периодич. системы элементов, ат. номер 8, ат. масса 15,9994 а. е. м. Природный К. состоит из трёх стабильных изотопов: 16 О(99,762%),17 О (0,038%) и 18O (0,200%). Ядра атомов 16 О содержат 8 протонов и 8… …   Физическая энциклопедия

  • кислород — халькоген, органоген, озон, оксиген Словарь русских синонимов. кислород сущ., кол во синонимов: 8 • газ (55) • неметалл …   Словарь синонимов

  • КИСЛОРОД — КИСЛОРОД, кислорода, мн. нет, муж. Газ, химический элемент, входящий в состав воздуха и необходимый для дыхания. В тесной комнате чувствуется недостаток кислорода. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • КИСЛОРОД — КИСЛОРОД, а ( у), муж. Химический элемент, бесцветный газ, входящий в состав воздуха, необходимый для дыхания и горения. | прил. кислородный, ая, ое. Кислородное голодание, кислородная недостаточность (пониженное содержание кислорода в организме; …   Толковый словарь Ожегова

  • КИСЛОРОД — самый распространенный в природе элемент, представляющий собой газ без цвета, запаха и вкуса. Встречается в соединении с водородом (вода), с разными металлами и металлоидами, в минералах и горных породах и в свободном состоянии в воздухе. Для… …   Технический железнодорожный словарь

Книги

  • Кислород, Миллер, Эндрю. … Подробнее  Купить за 351 руб
  • Кислород, Эндрю Миллер. Англия, конец 90-х. Два брата, Алек и Ларри, встречаются в доме матери, в котором не были много лет. Первый — литератор и переводчик, второй — спортсмен и киноактер. Тень былого омрачает их… Подробнее  Купить за 330 руб
  • Кислород, Эндрю Миллер. Лето 1997 года. Известный некогда теннисист и киноактер Ларри Валентайн и его брат Алек, скромный литератор, приезжают в родной дом на западе Англии, чтобы ухаживать за тяжелобольной матерью… Подробнее  Купить за 280 руб
Другие книги по запросу «Кислород» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.