- Стронций
-
38 Рубидий ← Стронций → Иттрий Внешний вид простого вещества Свойства атома Имя, символ, номер Стронций / Strontium (Sr), 38
Атомная масса
(молярная масса)Электронная конфигурация [Kr] 5s2
Радиус атома 215 пм
Химические свойства Ковалентный радиус 191 пм
Радиус иона (+2e) 112 пм
Электроотрицательность 0,95 (шкала Полинга)
Электродный потенциал −2,89
Степени окисления 2
Энергия ионизации
(первый электрон)Термодинамические свойства простого вещества Плотность (при н. у.) 2,54 г/см³
Температура плавления 1 042 K
Температура кипения 1657 K
Теплота плавления 9,20 кДж/моль
Теплота испарения 144 кДж/моль
Молярная теплоёмкость 26,79[1] Дж/(K·моль)
Молярный объём Кристаллическая решётка простого вещества Структура решётки кубическая гранецентрированая
Параметры решётки 6,080 Å
Температура Дебая Прочие характеристики Теплопроводность (300 K) (35,4) Вт/(м·К)
38 СтронцийSr87,625s2 Стро́нций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.
Содержание
История и происхождение названия
Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Строншиан, давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено в 1787 году Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году.
Нахождение в природе
В свободном виде стронций не встречается. Он входит в состав около 40 минералов. Из них наиболее важный — целестин SrSO4 (51,2 % Sr). Добывают также стронцианит SrCO3 (64,4 % Sr). Эти два минерала имеют промышленное значение. Чаще всего стронций присутствует как примесь в различных кальциевых минералах.
Среди прочих минералов стронция:
- SrAl3(AsO4)SO4(OH)6 — кеммлицит;
- Sr2Al(CO3)F5 — стенонит;
- SrAl2(CO3)2(OH)4•Н2О — стронциодрессерит;
- SrAl3(PO4)2(OH)5•Н2О — гойясит;
- Sr2Al(PO4)2OH — гудкенит;
- SrAl3(PO4)SO4(OH)6 — сванбергит;
- Sr(AlSiO4)2 — слосонит;
- Sr(AlSi3O8)2•5Н2О — брюстерит;
- Sr5(AsO4)3F — ферморит;
- Sr2(B14O23)•8Н2О — стронциоджинорит;
- Sr2(B5O9)Cl•Н2О — стронциохильгардит;
- SrFe3(PO4)2(OH)5•Н2О — люсуньит;
- SrMn2(VO4)2•4Н2О — сантафеит;
- Sr5(PO4)3OH — беловит;
- SrV(Si2O7) — харадаит.
По уровню физической распространённости в земной коре стронций занимает 23-е место — его массовая доля составляет 0,014 % (в литосфере — 0,045 %). Мольная доля металла в земной коре 0,0029 %. Стронций содержится в морской воде (8 мг/л)[3].
В природе стронций встречается в виде смеси 4 стабильных изотопов 84Sr (0,56 %), 86Sr (9,86 %), 87Sr (7,02 %), 88Sr (82,56 %).
Месторождения
Известны месторождения стронция в Калифорнии, Аризоне (США); России и других странах[4][5].
Получение
Существуют 3 способа получения металлического стронция:
- термическое разложение некоторых соединений
- электролиз
- восстановление оксида или хлорида
Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.
Электролитическое получение стронция электролизом расплава смеси SrCl2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.
При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.
Физические свойства
Стронций — мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.
Полиморфен — известны три его модификации. До 215оС устойчива кубическая гранецентрированная модификация (α-Sr), между 215 и 605оС — гексагональная (β-Sr), выше 605оС — кубическая объемно-центрированная модификация (γ-Sr).
Температура плавления — 768оС, Температура кипения — 1390оС.
Химические свойства
Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.
В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен −2,89 В). Энергично реагирует с водой, образуя гидроксид:
Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H2SO4, HNO3) реагирует слабо.
Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO2 и нитрид Sr3N2. При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.
Энергично реагирует с неметаллами — серой, фосфором, галогенами. Взаимодействует с водородом (выше 200оС), азотом (выше 400оС). Практически не реагирует с щелочами.
При высоких температурах реагирует с CO2, образуя карбид:
Легкорастворимы соли стронция с анионами Cl−, I−, NO3−. Соли с анионами F−, SO42−, CO32−, PO43− малорастворимы.
Применение
Основные области применения стронция и его химических соединений — это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.
Металлургия
Стронций применяется для легирования меди и некоторых её сплавов, для введения в аккумуляторные свинцовые сплавы, для десульфурации чугуна, меди и сталей.
Металлотермия
Стронций чистотой 99,99—99,999 % применяется для восстановления урана.
Магнитные материалы
Магнитотвёрдые ферриты стронция широко употребляются в качестве материалов для производства постоянных магнитов.
Пиротехника
В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в карминово-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.
Атомноводородная энергетика
Уранат стронция играет важную роль при получении водорода (стронций-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.
Высокотемпературная сверхпроводимость
Оксид стронция применяется в качестве компонента сверхпроводящих керамик.
Вакуумные электронные приборы
Оксид стронция, в составе твёрдого раствора оксидов других щёлочноземельных металлов — бария и кальция (BaO, CaO), используется в качестве активного слоя катодов косвенного накала в вакуумных электронных приборах.
Химические источники тока
Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с большой энергоемкостью и энергоплотностью.
Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.
Медицина
Изотоп с атомной массой 89, имеющий период полураспада 50,55 суток, применяется (в виде хлорида) в качестве противоопухолевого средства[6][7].
Биологическая роль
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.Влияние на организм человека
Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция[8].
Стронций природный — составная часть микроорганизмов, растений и животных. Стронций является аналогом кальция, поэтому он наиболее эффективно откладывается в костной ткани. В мягких тканях задерживается менее 1 %. Стронций с большой скоростью накапливается в организме детей до четырёхлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечно-сосудистой системы.
Пути попадания:
- вода (предельно допустимая концентрация стронция в воде в РФ — 8 мг/л, а в США — 4 мг/л[8])
- пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)
- интратрахеальное поступление
- через кожу (накожное)
- ингаляционное (через лёгкие)
- люди, работа которых связана со стронцием (в медицине радиоактивный стронций используют в качестве аппликаторов при лечении кожных и глазных болезней. Основные области применения природного стронция — это радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, пр-во магнитных материалов, радиоактивного — пр-во атомных электрических батарей. атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и др.)
Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» — поражение и деформация суставов, задержка роста и другие нарушения.
Радиоактивный стронций практически всегда негативно воздействует на организм человека. Откладываясь в костной ткани, он облучает костную ткань и костный мозг, что увеличивает риск заболевания раком костного мозга, а при поступлении большого количества может вызвать лучевую болезнь.
Изотопы
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.Стронций-90
Изотоп стронция 90Sr является радиоактивным с периодом полураспада 28.9 лет. 90Sr претерпевает β-распад, переходя в радиоактивный 90Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90Sr образуется при ядерных взрывах и внутри ядерного реактора во время его работы.
Применяется в производстве радиоизотопных источников тока в виде титаната стронция (плотность 4,8 г/см³, а энерговыделение около 0,54 Вт/см³).
Примечания
- ↑ Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1995. — Т. 4. — С. 441. — 639 с. — 20 000 экз. — ISBN 5—85270—092—4
- ↑ Стронций на Integral Scientist Modern Standard Periodic Table
- ↑ J.P. Riley and Skirrow G. Chemical Oceanography V. I, 1965
- ↑ Рубидий — Свойства химических элементов
- ↑ NR2.Com.Ua: Пермская область. Пермские месторождения стронция могут вызвать снижение мировых цен на это полезное ископаемо / 22.08.00 / Новый Регион — Россия
- ↑ Журнал ABC — Стронция-89 хлорид — Стронция хлорид [89Sr]
- ↑ Диссертация на тему «Современная тактика системной радиотерапии хлоридом стронция-89 в комплексном лечении больных с метастатическим поражением костей.» автореферат по специал …
- ↑ 1 2 Токсикологические данные стронция
Ссылки
Периодическая система химических элементов Д. И. Менделеева 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 H He 2 Li Be B C N O F Ne 3 Na Mg Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo Щелочные металлы Щёлочноземельные металлы Лантаноиды Актиноиды Переходные металлы Другие металлы Металлоиды Другие неметаллы Галогены Инертные газы Электрохимический ряд активности металлов Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au
Элементы расположены в порядке возрастания стандартного электродного потенциала.Алюминат стронция (SrAl2O4) • Борид стронция (SrB6) • Бромат стронция Sr(BrO3)2 • Бромид стронция (SrBr2) • Гидрид стронция (SrH2) • Гидрокарбонат стронция (Sr(HCO3)2) • Гидроксид стронция (Sr(OH)2) • Иодид стронция (SrI2) • SrI2 • Карбид стронция (SrC2) • Карбонат стронция (SrCO3) • Нитрат стронция (Sr(NO3)2) • Нитрид стронция (Sr3N2) • Оксид стронция (SrO) • Ортоарсенат стронция (Sr3(AsO4)2) • Ортосиликат стронция (Sr2SiO4) • Фосфат стронция (Sr3(PO4)2) • Пероксид стронция (SrO2) • Перхлорат стронция (Sr(ClO4)2) • Полисульфид стронция (SrS4) • Рутенат стронция (Sr2RuO4) • Силицид стронция (Sr2Si) • Сульфат стронция (SrSO4) • Сульфид стронция (SrS) • Сульфит стронция (SrSO3) • Титанат стронция (SrTiO3) • Феррит стронция (Sr(FeO2)2) Фосфид стронция (Sr3P2) • Фторид стронция (SrF2) • Хлорид стронция (SrCl2)
Категории:- Химические элементы
- Соединения стронция
- Высокоопасные вещества
- 1808 год в науке
- Стронций
Wikimedia Foundation. 2010.