- Алгебра
-
А́лгебра (от араб. الجبر, «аль-джабр» — восполнение[1]) — раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Алгебра — это наука, изучающая алгебраические системы с точностью до изоморфизма.
Алгебраическая система — упорядоченная пара множеств
. Первое множество (
) — элементы какой либо природы (числа, понятия, буквы). Второе множество (
) — операции над первым множеством (сложение, умножение, возведение в степень). Примеры: группа, кольцо, поле.
Содержание
История
Истоки алгебры уходят к временам глубокой древности. Ещё 4000 лет назад вавилонские учёные могли решать квадратные уравнения. Тогда никаких обозначений не было, и уравнения записывались в словесной форме. Первые обозначения появились в Древней Греции благодаря учёному Диофанту. Неизвестное число он назвал «ἀριθμός», вторую степень неизвестного — «δύναμις», третью «κύβος», четвёртую — «дюнамодюнамис», пятую — «дюнамокюбос», шестую — «кюбоккюбос». Все эти величины он обозначал сокращениями (ар, дю, кю, ддю, дкю, ккю). Ни вавилоняне, ни греки не знали и не признавали отрицательные числа.
За 2000 лет до нашего времени китайские учёные решали уравнения первой степени и их системы, а также квадратные уравнения. Они уже знали отрицательные и иррациональные числа. Поскольку в китайском языке каждый символ обозначает понятие, то сокращений не было. В 13 веке китайцы открыли закон образования биномиальных коэффициентов, ныне известный как «треугольник Паскаля». В Европе он был открыт лишь 250 лет спустя.[2]
Как наука, алгебра стала существовать благодаря мусульманскому учёному из Средней Азии Аль-Хорезми. Впервые термин «алгебра» встретился в 825 году в сочинении этого учёного «Краткая книга об исчислении аль-джабра и аль-мукабалы». Слово «аль-джабр» при этом означало операцию переноса вычитаемых из одной части уравнения в другую и его буквальный смысл «восполнение»[1].
В 12 веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространения получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.
Вплоть до второй половины XX века практическое применение алгебры ограничивалось, в основном, решением алгебраических уравнений и систем уравнений с несколькими переменными. Во второй половине XX века началось бурное развитие ряда новых отраслей техники. Появились электронно-вычислительные машины, устройства для хранения, переработки и передачи информации, системы наблюдения типа радара. Проектирование новых видов техники и их использование немыслимо без применения современной алгебры. Так, электронно-вычислительные машины устроены по принципу конечных автоматов. Для проектирования электронно-вычислительных машин и электронных схем используются методы булевой алгебры. Современные языки программирования для ЭВМ основаны на принципах теории алгоритмов. Теория множеств используется в системах компьютерного поиска и хранения информации. Теория категорий используется в задачах распознавания образов, определении семантики языков программирования, и других практических задачах. Кодирование и декодирование информации производится методами теории групп. Теория рекуррентных последовательностей используется в работе радаров. Экономические расчеты невозможны без использования теории графов. Математическое моделирование широко использует все разделы алгебры.
Классификация
Алгебру можно грубо разделить на следующие категории:
- Элементарная алгебра, которая изучает свойства операций с вещественными числами, где символами обозначаются постоянные и переменные, а также правила преобразования математических выражений и уравнений с использованием этих символов. Обычно преподаётся в школе под названием алгебра. Университетские курсы теории групп тоже можно назвать элементарной алгеброй.
- Абстрактная алгебра, иногда называемая современной алгеброй, где алгебраические структуры, такие как группы, кольца и поля аксиоматизируются и изучаются.
- Линейная алгебра, в которой изучаются свойства векторных пространств (включая матрицы).
- Универсальная алгебра, в которой изучаются свойства, общие для всех алгебраических структур.
- Алгебраическая теория чисел изучает свойства чисел в различных алгебраических системах. Теория чисел была создана путём расширения и обобщения алгебры.
- Алгебраическая геометрия применяет достижения алгебры для решения проблем геометрии.
- Алгебраическая комбинаторика, в которой методы абстрактной алгебры используются для изучения вопросов комбинаторики.
В некоторых напралениях углублённого изучения, аксиоматические алгебраические системы, такие как группы, кольца, поля и алгебры над полем на присутствие геометрических структур (метрик и топологий), совместимых с алгебраическими структурами. Список некоторых разделов функционального анализа:
Элементарная алгебра
Элементарная алгебра — раздел алгебры, который изучает самые базовые понятия. Обычно изучается после изучения основных понятий арифметики. В арифметике изучаются числа и простейшие (+, −, ×, ÷) действия с ними. В алгебре числа заменяются на переменные (a,b,c,x,y и так далее). Такой подход полезен, потому что:
- Позволяет получить общее представление законов арифметики (например, a+b=b+a для любых a и b), что является первым шагом к систематическому изучению свойств действительных чисел.
- Позволяет ввести понятие «неизвестного», сформулировать уравнения и изучать способы их решения. (Для примера, "Найти число x, такое что 3x + 1 = 10" или, в более общем случае, "Найти число x, такое что ax + b = c". Это приводит к выводу, что нахождение значения переменной кроется не в природе чисел из уравнения, а в операциях между ними.)
- Позволяет сформулировать понятие функции. (Для примера, "Если вы продали x билетов, то ваша прибыль составит 3x − 10 рублей, или f(x) = 3x − 10, где f — функция, и x — число, от которого зависит функция.")
См. также
- Абстрактная алгебра
- Элементарная алгебра
- Теория множеств
- Теория графов
- Конечные автоматы
- Теория алгоритмов
- Булева алгебра
Ссылки
- Русскоязычные ресурсы по алгебре в Открытом Каталоге.
- Информация на начало XX века: Алгебра // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
Примечания
Для улучшения этой статьи желательно?: - Переработать оформление в соответствии с правилами написания статей.
- Проставив сноски, внести более точные указания на источники.
Портал «Наука» Геометрия Алгебраическая геометрия • Аналитическая геометрия • Евклидова геометрия • Неевклидова геометрия • Планиметрия • Стереометрия • Тригонометрия Топология Общая топология • Алгебраическая топология Смежные
направленияДифференциальная геометрия и топология • Геометрическая топология Портал «Математика» | Категория «Математика» Категория:- Алгебра
Wikimedia Foundation. 2010.