Финансовая математика

Финансовая математика

Финансовая математика — раздел прикладной математики, имеющий дело с математическими задачами, связанными с финансовыми расчётами. В финансовой математике любой финансовый инструмент рассматривается с точки зрения генерируемого этим инструментом некоторого (возможно случайного) денежного потока.

Основные направления:

Задача классической финансовой математики сводится к сопоставлению денежных потоков от различных финансовых инструментов исходя из критериев временной ценности денег (с учётом фактора дисконтирования), оценка эффективности вложений в те или иные финансовые инструменты (включая оценку эффективности инвестиционных проектов), разработка критериев отбора инструментов. В классической финансовой математике по умолчанию предполагается детерминированность процентных ставок и потоков платежей.

Стохастическая финансовая математика имеет дело с вероятностными платежами и ставками. Основная задача состоит в получении адекватной оценки инструментов с учётом вероятностного характера рыночных условий и потока платежей от инструментов. Формально сюда можно отнести оптимизацию портфеля инструментов в рамках средне-дисперсионного анализа. Также на моделях стохастической финансовой математики основаны методы оценки финансовых рисков. При этом в стохастической финансовой математике возникает необходимость определить критерии оценки рисков в том числе для адекватной оценки финансовых инструментов.

Содержание

Основные концепции, подходы и методы финансовой математики

Наращение процентов и дисконтирование денежных потоков

Наращение процентов

Расчётные процедуры финансовой математики основаны на принципах начисления процентов на вложенные средства. Простые проценты не предполагают реинвестирования получаемых процентов. Поэтому суммарная стоимость FV, получаемая за время t при вложении суммы PV, определяется линейно FV_t=PV (1+i t).

Однако, чаще всего финансовая математика имеет дело со сложными процентами, когда учитывается реинвестирование (капитализация) получаемых процентов. В таком случае формула будущей стоимости принимает экспоненциальный вид:

FV_t = PV (1+i)^t = PV e^{r t}~,~~r = \ln (1+i)

где r — непрерывная или логарифмическая ставка. Последняя запись сложных процентов бывает удобна в аналитических целях.

В финансовой практике принято задавать годовые процентные ставки, начисление и капитализация при этом могут происходить чаще 1 раза в год. Если капитализация процентов происходит m раз в году, то формула будущей стоимости принимает вид

FV_t=PV (1+i/m)^{m t} = PV(1+i_e)^t

где i_e = (1+i/m)^m-1 — эффективная годовая ставка процента.

По эффективной ставке можно сравнивать различные варианты вложения средств с различными номинальными ставками и периодами капитализации процентов. При m \rightarrow \infty имеем непрерывное начисление и формула принимает вид FV_t=PV e^{rt}. Эта формула эквивалентна вышеприведенной формуле для сложных процентов при ставке r равной логарифмической ставке.

Будущая и текущая стоимость

Базовое предположение в финансовой математике заключается в том, что в экономике существует возможность вложения любой суммы в некий (альтернативный) инструмент (по умолчанию — банковский депозит) под некоторую сложную ставку i. На основе принципов наращения сложных процентов по этой ставке i каждой денежной сумме (стоимости) в данный момент времени ставится в соответствие будущая стоимость на момент времени t (FV_t), а каждой сумме FV_t ставится в соответствие текущая (приведенная, дисконтированная) стоимость (PV):

FV_t=PV(1+i)^t~,~ ~PV=\frac {FV_t}{(1+i)^t}=FV_t(1+i)^{-t}

Процесс приведения будущей стоимости к текущей называется дисконтированием. Ставку (доходность)альтернативного вложения i — ставкой дисконтирования.

Более обобщенно, сумме в момент времени t_1 можно поставить в соответствие сумму в момент времени t_2:

S_{t_2}=S_{t_1}(1+i)^{t_2-t_1}

Причем данная формула справедлива как в случае t_2>t_1, так и t_2<t_1. Суммы, относящиеся или приведенные к одному моменту времени сопоставимы. Исходя из этого возникает концепция временной стоимости (ценности) денег, сущность которой заключается в разной ценности одинаковых сумм в разные моменты времени. Дисконтирование этих сумм (приведение к одному моменту времени) по одинаковой ставке позволяет сопоставлять суммы для разных моментов времени (различные денежные потоки) между собой.

Если задан денежный поток CF=(CF_{t_1}, ... , CF_{t_k}, ...,CF_{t_n} ), то будущая стоимость в момент времени t>t_n вложений данного потока денег (в соответствующие моменты времени) будет суммой будущих стоимостей отдельных составляющих потока (предполагается, что денежный поток генерируется определенным финансовым инструментом или инвестиционным проектом или бизнесом в целом, и в то же время существует возможность вложить средства в альтернативный инструмент с фиксированной доходностью, равной ставке дисконтирования):

FV_t=\sum^n_{k=1}  {CF_{t_k}} (1+i)^{t-t_k}

Данной сумме FV_t можно поставить в соответствие сумму в текущий момент времени в соответствии с общим правилом дисконтирования:

PV=FV_t /(1+i)^t=\sum^n_{k=1}  {CF_{t_k}} (1+i)^{t-t_k}/(1+i)^t=\sum_{k=1}^n \frac {CF_{t_k}} {(1+i)^{t_k}}

В предельном случае следует рассматривать непрерывный денежный поток с плотностью CF(t), тогда текущая стоимость непрерывного денежного потока будет равна следующему интегралу:

PV=\int_0^{\infty}CF(t)e^{-rt}dt

Таким образом, каждому денежному потоку ставится в соответствие его текущая (приведенная, дисконтированная) стоимость по ставке дисконтирования.

Для аннуитетов на основе формулы геометрической прогрессии получаем следующую формулу приведенной стоимости PV_i=a  \frac {1-(1+i)^{-t}} {i} . Для вечного аннуитета (то есть при t \rightarrow \infty) получаем простое выражение PV=a/i . В случае бесконечного денежного потока с постоянным темпом роста получаем формулу Гордона PV=\frac {CF_1} {i-g}

Эффективная (внутренняя) доходность

Если финансовый инструмент имеет некую оценку стоимости, например, рыночную цену, цену покупки и т. д., то зная денежный поток от инструмента можно оценить его эффективную (внутреннюю) доходность как ставку дисконтирования, при которой приведенная стоимость будет равна фактической цене инструмента, то есть решение уравнения P=PV(i) по ставке i. Данный показатель по разному может называться в зависимости от рассматриваемой задачи и инструментов. Например, для облигаций — это доходность к погашению (YTM), для инвестиционных проектов — внутренняя ставка доходности (IRR).

Дюрация денежного потока

Значение приведенной стоимости является нелинейной функцией ставки дисконтирования. Соответственно полностью денежный поток характеризуется графиком приведенной стоимости по ставке дисконтирования. Чувствительность (эластичность) приведенной стоимости к изменению процентной ставки (логарифмическая производная по 1+i) оказывается равной дюрации денежного потока — средневзвешенному сроку денежного потока (весами являются доли приведенных стоимостей отдельных составляющих потока в приведенной стоимости всего потока).

D=-\frac {\partial \ln PV} {\partial \ln(1+i)}=\frac {\sum^n_{k=1}\frac {CF_{t_k}t_k} {(1+i)^{t_k}}} {\sum^n_{k=1} \frac {CF_{t_k}} {(1+i)^{t_k}}}= \overline{T}

В первом приближении в качестве дюрации можно использовать средневзвешенный срок денежного потока без учёта дисконтирования (то есть с нулевой ставкой дисконтирования). Дюрацию можно использовать для упрощенной оценки изменения текущей стоимости финансового инструмента при небольшом изменении ставки дисконтирования. Также дюрацию можно интерпретировать иначе — это приблизительно тот период, за который можно получить суммарную величину денежного потока, если вложить под ставку дисконтирования сумму, равную текущей стоимости этого денежного потока. В частном случае бескупонной облигации дюрация совпадает со сроком такой облигации. В случае вечного аннуитета дюрация равна (1+i)/i

Для уточнения оценки влияния изменения процентной ставки иногда наряду с дюрацией используют также поправку второго порядка — выпуклость:

V=-\frac {\partial D} {\partial \ln (1+i)}=\frac {\partial^2 \ln PV} {\partial [\ln(1+i)]^2}=\overline {T^2}-\overline{T}^2

Тогда с достаточной для практических целей точностью

\vartriangle \ln PV=-D\vartriangle \ln (1+i)+\frac {1} {2} V [\vartriangle {\ln(1+i)}]^2

Портфельная теория

Оптимизация портфеля обычно рассматривается в рамках средне-дисперсионного анализа. Впервые данный подход к формированию портфелей предложил Гарри Марковиц (впоследствии лауреат Нобелевской премии). В рамках данного подхода доходности инструментов предполагаются случайными величинами с некоторым средним уровнем (математическое ожидание), волатильностью (дисперсией) и ковариациями между доходностями инструментов. Дисперсия доходности является мерой риска вложений в данный инструмент или в порфтель. Хотя формально подход применим при любом распределении доходностей, результаты могут быть лучше для нормального распределения, в связи с тем, что математическое ожидание и ковариационная матрица полностью характеризуют нормальное распределение.

Формулировки и решения задачи различаются в зависимости от тех или иных допущений, в частности, возможности отрицательных долей инструментов в портфеле (т. н. «короткие продажи»), наличия безрискового актива с нулевой дисперсией и корреляцией с другими активами и т. д. Задача может быть сформулирована как минимизация дисперсии портфеля при требуемой средней доходности и других ограничениях или же максимизацию доходности при заданном уровне риска (дисперсии). Также возможны иные формулировки, предполагающие максимизацию или минимизацию комплексных целевых функций, учитывающих и доходность и риск.

На основе портфельной теории Марковица в дальнейшем была разработана современная теория ценообразования финансовых активов — CAPM (Capital Assets Pricing Model).

Стохастические модели

Стохастические модели с дискретным временем

Базовая модель динамики цен финансовых инструментов — модель геометрического броуновского движения, согласно которой доходности (непрерывные, логарифмические) инструментов подчиняются процессу случайного блуждания:

r_t=\ln p_t-\ln p_{t-1}=\ln {\frac {p_t} {p_{t-1}}}=\varepsilon_t

где \varepsilon_t — белый шум

Данная модель удовлетворяет гипотезе эффективного рынка. В рамках данной гипотезы предполагается невозможность прогнозирования доходностей на будущие периоды на основании какой-либо информации, в том числе на основании информации о прошлых значениях доходностей.

В моделях ARIMA предполагается возможность прогнозирования доходностей на основе прошлых значений доходностей.

Модели GARCH предназначены для моделирования условной волатильности доходностей. Данные модели объясняют «толстые хвосты» распределения доходностей, а также кластеризацию волатильности, которые наблюдаются на практике. В некоторых моделях также учитывается возможность асимметрии уровня волатильности при снижении и при повышении рынка.

Имеются также иные подходы к моделированию волатильности — Модели стохастической волатильности.

Стохастические модели с непрерывным временем

  • Модели, основанные на броуновском движении
 dS_t = \mu S_t\, dt + \sigma S_t\, dW_t

где W_t стандартное броуновское движение (винеровский процесс)

Литература

  • Малыхин В. И. Финансовая математика: Учеб. пособие для вузов. — М.: ЮНИТИ-ДАНА, 2003. — 237 с. — ISBN 5-238-00559-8
  • Ширяев А. Н. Основы стохастической финансовой математики. — М.: ФАЗИС, 1998. — Т. 1. Факты. Модели. — 512 с. — ISBN 5-7036-0043-X
  • Ширяев А. Н. Основы стохастической финансовой математики. — М.: ФАЗИС, 1998. — Т. 2. Теория. — 512 с. — ISBN 5-7036-0043-8
  • Martin W. Baxter, Andrew J. O. Rennie. Financial Calculus. An introduction to derivative pricing. Cambridge University Press, Cambridge 2001. ISBN 0-521-55289-3
  • Hans-Peter Deutsch. Derivate und Interne Modelle. Schäffer-Poeschel Verlag, Stuttgart 2004. ISBN 3-7910-2211-3
  • Michael Günther, Ansgar Jüngel. Finanzderivate mit MATLAB. Mathematische Modellierung und numerische Simulation. Vieweg, Wiesbaden 2003. ISBN 3-528-03204-9
  • John C. Hull. Options, Futures, and Other Derivatives Pearson US Imports & PHIPEs 2002 (5. Aufl.). ISBN 0-13-046592-5
  • Jürgen Kremer. Einführung in die diskrete Finanzmathematik. Springer, Berlin 2005. ISBN 3-540-25394-7
  • Volker Oppitz, Volker Nollau. Taschenbuch Wirtschaftlichkeitsrechnung. Carl Hanser Verlag, München 2003. ISBN 3-446-22463-7
  • Volker Oppitz. Gabler Lexikon Wirtschaftlichkeitsberechnung. Gabler, Wiesbaden 1995. ISBN 3-409-19951-9
  • Paul Wilmott. Paul Wilmott on Quantitative Finance. John Wiley, Chichester 2000. ISBN 0-471-87438-8



Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Финансовая математика" в других словарях:

  • ФИНАНСОВАЯ МАТЕМАТИКА — метод определения стоимости денежных средств при их передаче в пользование другим лицам. Основная задача Ф. м. приведение денежных платежей в соответствие с условиями финансовой сделки. Ее решение основывается на понятии будущей и современной… …   Энциклопедический словарь экономики и права

  • Стохастическая финансовая математика — раздел прикладной математики, посвященный исследованию финансовых рынков с использованием аппарата стохастического исчисления. Основная прикладная задача стохастической финансовой математики определение справедливой стоимости финансовых… …   Википедия

  • Математика — Евклид. Деталь «Афинской школы» Рафаэля Математика (от др. греч …   Википедия

  • Математика гармонии — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени …   Википедия

  • МАТЕМАТИКА ФИНАНСОВАЯ — (см. ФИНАНСОВАЯ МАТЕМАТИКА) …   Энциклопедический словарь экономики и права

  • Финансовая пирамида — У этого термина существуют и другие значения, см. Пирамида. Пирамида схематически. 13 й уровень невозможен  на планете Земля нет такой численности населения. Финансо …   Википедия

  • ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ — (ФА) государственное учреждение высшего профессионального образования. Преобразована в 1992 (вначале в 1991 как Государственная финансовая академия) из Московского финансового института, созданного в 1946 на базе слияния двух московских вузов –… …   Финансово-кредитный энциклопедический словарь

  • Прикладная математика — область математики, рассматривающая применение математических методов, алгоритмов в других областях науки и практики. Примерами такого применения будут: численные методы, математическая физика, линейное программирование, оптимизация и… …   Википедия

  • Дискретная математика — Дискретная математика  область математики, занимающаяся изучением дискретных структур, которые возникают как в пределах самой математики, так и в её приложениях. К числу таких структур могут быть отнесены конечные группы, конечные графы, а… …   Википедия

  • Финансы — Публичные финансы: Международные финансы Государственный бюджет Местный бюджет Частные финансы: Корпоративные финансы Финансы домохозяйств Финансовые рынки: Рынок денег Валютный рынок Фондовый рынок Срочный рынок Финанс …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»