- Додекаэдр
-
Додекаэдр Тип Правильный многогранник Грань Правильный пятиугольник Граней 12 Рёбер 30 Вершин 20 Граней при вершине 3 Длина ребра Площадь поверхности Объём Радиус описанной сферы Радиус вписанной сферы Группа симметрии Икосаэдрическая (Ih) Двойственный многогранник икосаэдр Додека́эдр (от греч. δώδεκα — двенадцать и εδρον — грань) — двенадцатигранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.
Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма плоских углов при каждой из 20 вершин равна 324°.
Додекаэдр имеет три звёздчатые формы.
Содержание
Основные формулы
Если за длину ребра принять , то площадь поверхности додекаэдра:
Объём додекаэдра:
Радиус описанной сферы:
Радиус вписанной сферы:
Свойства
- В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра.
Элементы симметрии додекаэдра
- Додекаэдр имеет центр симметрии и 15 осей симметрии.
Каждая из осей проходит через середины противолежащих параллельных ребер.
- Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.
Тела в форме додекаэдра
- Додекаэдр применяется как генератор случайных чисел (вместе с другими костями) в настольных ролевых играх, и обозначается при этом d12 (dice — кости).
- В игре Пентакор мир представлен в виде этой геометрической фигуры.
Интересные факты
- Платон сопоставлял с правильными многогранниками различные классические стихии. О додекаэдре Платон писал, что «…его бог определил для Вселенной и прибегнул к нему в качестве образца»[1].
- В 2003 году, при анализе данных космического аппарата WMAP, была выдвинута гипотеза, что Вселенная представляет собой додекаэдрическое пространство Пуанкаре[2][3][4].
Примечания
- ↑ Платон. «Тимей»
- ↑ The optimal phase of the generalised Poincare dodecahedral space hypothesis implied by the spatial cross-correlation function of the WMAP sky maps (англ.).
- ↑ Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background (англ.).
- ↑ Jeffrey Weeks The Poincare Dodecahedral Space and the Mystery of the Missing Fluctuations (англ.). Архивировано из первоисточника 4 ноября 2012.
См. также
- Пентагондодекаэдр — неправильный додекаэдр
- Римский додекаэдр
- Мегаминкс
- Ромбододекаэдр
- Ромбоикосододекаэдр
- Двенадцатигранники
Многогранники Правильные
(Платоновы тела)Трёхмерные Правильный тетраэдр • Куб • Октаэдр • Додекаэдр • Икосаэдр Четырёхмерные 6 правильных многогранников Большей размерности N-мерный куб • N-мерный октаэдр • N-мерный тетраэдр Звёздчатый додекаэдр • Звёздчатый икосододекаэдр • Звёздчатый икосаэдр • Звёздчатый многогранник • Звёздчатый октаэдр Выпуклые Архимедовы тела Кубооктаэдр • Икосододекаэдр • Усечённый тетраэдр • Усечённый октаэдр • Усечённый икосаэдр • Усечённый куб • Усечённый додекаэдр • Ромбокубоктаэдр • Ромбоикосододекаэдр • Ромбоусечённый кубоктаэдр • Ромбоусечённый икосододекаэдр • Курносый куб • Курносый додекаэдр • Усечённый кубооктаэдр • Усечённый икосододекаэдр • Правильная призма • Антипризма Каталановы тела Ромбододекаэдр • Ромботриаконтаэдр • Триакистетраэдр • Тетракисгексаэдр • Пентакисдодекаэдр • Триакисоктаэдр • Триакисикосаэдр • Дельтоидальный икоситетраэдр • Дельтоидальный гексеконтаэдр •Пентагональный икоситетраэдр • Пентагональный гексеконтаэдр • Дисдакисдодекаэдр • Дисдакистриаконтаэдр Без полной пространственной симметрии Пирамида • Призма • Бипирамида • Антипризма • Зоноэдр • Параллелепипед • Ромбоэдр •Призматоид• Усечённая пирамида• Пентагондодекаэдр • Параллелоэдр Формулы,
теоремы,
теорииПрочее Ортоцентрический тетраэдр • Равногранный тетраэдр • Прямоугольный параллелепипед • Группа многогранника • Двенадцатигранники • Телесный угол • Единичный куб • Изгибаемый многогранник • Развёртка • Символ Шлефли • Многомерные (N-мерный тетраэдр • Тессеракт • Пентеракт • Хексеракт • Хептеракт • Октеракт • Энтенеракт • Декеракт • Гиперкуб)
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.Категории:- Многогранники
- Правильные многогранники
Wikimedia Foundation. 2010.