Символ Шлефли

Символ Шлефли

Символ Шлефлитопологическая характеристика многогранника. В математике символ Шлефли применяется для описания правильных многоугольников, многогранников, и n-многогранников.

Символ Шлефли назван в честь математика XIX века Людвига Шлефли, который внес значительный вклад в геометрию и другие области.

Содержание

Построение

Символ Шлефли обозначается в виде {p, q, r,…}.Символ Шлефли определяется по индукции следующим образом. Определим p как число сторон 2-мерной грани. Зафиксируем теперь какую-то вершину P многогранника Γ и рассмотрим все вершины Γ, соединенные с ней ребром. Все эти вершины лежат в одной гиперплоскости H (ортогональной к оси, соединяющей центр многогранника с вершиной P) и сечение ΓH многогранника Γ гиперплоскостью H представляет собой правильный многогранник на 1 меньшей размерности. Так как все вершины Γ равноправны, то тип этого многогранника не зависит от выбора вершины P. Определим теперь q как число сторон 2-мерной грани многогранника ΓH. Продолжая действовать таким образом до тех пор, пока получающееся сечение имеет двумерную грань, мы получим символ Шлефли Γ. Таким образом, символ Шлефли n-мерного многогранника состоит из n−1 целого числа ≥ 3.

Примеры

Размерность
пространства
Символ Шлефли Многогранник
3 {3,3} Тетраэдр
3 {4,3} Куб
3 {3,4} Октаэдр
3 {3,5} Икосаэдр
3 {5,3} Додекаэдр
4 {3,3,3} 5-cell (4-симплекс)
4 {4,3,3} 8-cell (4-куб)
4 {3,3,4} 16-cell
4 {3,4,3} 24-cell
4 {5,3,3} 120-cell
4 {3,3,5} 600-cell
≥5 {3,…,3} n-симплекс
≥5 {3,…,3,4} гипероктаэдр
≥5 {4,3,…,3} гиперкуб

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Символ Шлефли" в других словарях:

  • Шлефли — Шлефли, Людвиг Людвиг Шлефли Людвиг Шлефли (нем. Ludwig Schläfli; 15 января 1814 Грассвил, нынешний Зееберг  20 марта 1895, Берн)  швейцарский математ …   Википедия

  • Шлефли, Людвиг — Людвиг Шлефли Людвиг Шлефли (нем. Ludwig Schläfli; 15 января …   Википедия

  • Формула Шлефли — соотношение на производные двугранных углов и длины рёбер семейства многогранников. Предложена Л. Шлефли[1]. Содержание 1 Формула 2 Вариации и обобщения …   Википедия

  • МНОГОГРАННИКА ГРУППА — группа Sym Рсимметрии многогранника Рв n мерном евклидовом пространстве E n , т. е. группа всех движений пространства Е n, переводящих Рв себя. Многогранник Рназ. правильным, если группа Sym Pтранзитивно действует на множестве его флагов наборов… …   Математическая энциклопедия

  • Двумерное пространство — У этого термина существуют и другие значения, см. 2D. У этого термина существуют и другие значения, см. Пространство. Двумерное пространство (иногда говорят двухмерное пространство) геометрическая модель плоской проекции физического мира, в… …   Википедия

  • Правильный многогранник — Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией …   Википедия

  • ПРАВИЛЬНЫЕ МНОГОГРАННИКИ — тела Платона, выпуклые многогранники, все грани к рых суть одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные (рис. 1a 1д). В евклидовом пространстве Е 3 существуют пять П. м., данные о к рых приведены в …   Математическая энциклопедия

  • Правильные многомерные многогранники — Правильный n мерный многогранник  многогранники n мерного евклидова пространства, которые являются наиболее симметричными в некотором смысле. Правильные трёхмерные многогранники называются также платоновыми телами. Содержание 1 Определение 2 …   Википедия

  • Изгибаемый многогранник — Многогранник (точнее многогранная поверхность) называется изгибаемым, если его пространственную форму можно изменить такой непрерывной во времени деформацией, при которой каждая грань не изменяет своих размеров (то есть движется как твёрдое тело) …   Википедия

  • Декеракт — Декеракт  десятимерный гиперкуб, аналог куба в десятимерном пространстве. Определяется как выпуклая оболочка 1024 точек. Он может быть назван по …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»