- Символ Шлефли
-
Символ Шлефли — топологическая характеристика многогранника. В математике символ Шлефли применяется для описания правильных многоугольников, многогранников, и n-многогранников.
Символ Шлефли назван в честь математика XIX века Людвига Шлефли, который внес значительный вклад в геометрию и другие области.
Содержание
Построение
Символ Шлефли обозначается в виде {p, q, r,…}.Символ Шлефли определяется по индукции следующим образом. Определим p как число сторон 2-мерной грани. Зафиксируем теперь какую-то вершину P многогранника Γ и рассмотрим все вершины Γ, соединенные с ней ребром. Все эти вершины лежат в одной гиперплоскости H (ортогональной к оси, соединяющей центр многогранника с вершиной P) и сечение Γ ∩ H многогранника Γ гиперплоскостью H представляет собой правильный многогранник на 1 меньшей размерности. Так как все вершины Γ равноправны, то тип этого многогранника не зависит от выбора вершины P. Определим теперь q как число сторон 2-мерной грани многогранника Γ ∩ H. Продолжая действовать таким образом до тех пор, пока получающееся сечение имеет двумерную грань, мы получим символ Шлефли Γ. Таким образом, символ Шлефли n-мерного многогранника состоит из n−1 целого числа ≥ 3.
Примеры
Размерность
пространстваСимвол Шлефли Многогранник 3 {3,3} Тетраэдр 3 {4,3} Куб 3 {3,4} Октаэдр 3 {3,5} Икосаэдр 3 {5,3} Додекаэдр 4 {3,3,3} 5-cell (4-симплекс) 4 {4,3,3} 8-cell (4-куб) 4 {3,3,4} 16-cell 4 {3,4,3} 24-cell 4 {5,3,3} 120-cell 4 {3,3,5} 600-cell ≥5 {3,…,3} n-симплекс ≥5 {3,…,3,4} гипероктаэдр ≥5 {4,3,…,3} гиперкуб См. также
- Формула Шлефли
- Эйлерова характеристика
- Правильные N-мерные многогранники
Ссылки
- Weisstein, Eric W. Символ Шлефли (англ.) на сайте Wolfram MathWorld.
- Николай Вавилов КОНКРЕТНАЯ ТЕОРИЯ ГРУПП first draught
Многогранники Правильные
(Платоновы тела)Трёхмерные Правильный тетраэдр • Куб • Октаэдр • Додекаэдр • Икосаэдр Четырёхмерные 6 правильных многогранников Большей размерности N-мерный куб • N-мерный октаэдр • N-мерный тетраэдр Звёздчатый додекаэдр • Звёздчатый икосододекаэдр • Звёздчатый икосаэдр • Звёздчатый многогранник • Звёздчатый октаэдр Выпуклые Архимедовы тела Кубооктаэдр • Икосододекаэдр • Усечённый тетраэдр • Усечённый октаэдр • Усечённый икосаэдр • Усечённый куб • Усечённый додекаэдр • Ромбокубоктаэдр • Ромбоикосододекаэдр • Ромбоусечённый кубоктаэдр • Ромбоусечённый икосододекаэдр • Курносый куб • Курносый додекаэдр • Усечённый кубооктаэдр • Усечённый икосододекаэдр • Правильная призма • Антипризма Каталановы тела Ромбододекаэдр • Ромботриаконтаэдр • Триакистетраэдр • Тетракисгексаэдр • Пентакисдодекаэдр • Триакисоктаэдр • Триакисикосаэдр • Дельтоидальный икоситетраэдр • Дельтоидальный гексеконтаэдр •Пентагональный икоситетраэдр • Пентагональный гексеконтаэдр • Дисдакисдодекаэдр • Дисдакистриаконтаэдр Без полной пространственной симметрии Пирамида • Призма • Бипирамида • Антипризма • Зоноэдр • Параллелепипед • Ромбоэдр •Призматоид• Усечённая пирамида• Пентагондодекаэдр • Параллелоэдр Формулы,
теоремы,
теорииПрочее Ортоцентрический тетраэдр • Равногранный тетраэдр • Прямоугольный параллелепипед • Группа многогранника • Двенадцатигранники • Телесный угол • Единичный куб • Изгибаемый многогранник • Развёртка • Символ Шлефли • Многомерные (N-мерный тетраэдр • Тессеракт • Пентеракт • Хексеракт • Хептеракт • Октеракт • Энтенеракт • Декеракт • Гиперкуб)
Категория:- Многогранники
Wikimedia Foundation. 2010.