Кватернион

Кватернион

Кватернио́ны (от лат. quaterni, по четыре) — система гиперкомплексных чисел, образующая векторное пространство размерностью четыре над полем вещественных чисел. Кватернионы — минимальное расширение комплексных чисел, образующее тело, но их умножение некоммутативно. Предложена Гамильтоном в 1843 году, обычно обозначается \mathbb H.

Кватернионы удобны для описания изометрий трёх- и четырёхмерного Евклидовых пространств, и поэтому получили широкое распространение в механике. Также их используют в вычислительной математике, например при создании трёхмерной графики.[1]

Содержание

Определения

Стандартное

Кватернионы можно определить как формальную сумму \,a+bi+cj+dk, где \,a, b, c, d — вещественные числа, а \,i, j, k — мнимые единицы со следующим свойством: i^2=j^2=k^2=ijk=-1. Таким образом, таблица умножения базисных кватернионов — \,1, i, j, k — выглядит так:

· 1 i j k
1 \,1 \,i \,j \,k
i \,i \,-1 \,k \,-j
j \,j \,-k \,-1 \,i
k \,k \,j \,-i \,-1

например, \,ij=k, a \,ji=-k.

Как Вектор&скаляр

Кватернион представляет собой пару \left(a, \vec{u} \right), где \vec{u} — вектор трёхмерного пространства, а a\, — скаляр, то есть вещественное число. Операции сложения определены следующим образом:

\left(a, \vec{u} \right)+ \left(b , \vec{v}\right)= \left(a + b , \vec{u} + \vec{v}\right)

Произведение определяется следующим образом:

\left(a, \vec{u}\right)\left(b, \vec{v}\right)= \left(ab - \vec{u}\cdot\vec{v}, a\vec{v} + b\vec{u} + \vec{u}\times\vec{v}\right)

где \cdot обозначает скалярное произведение, а \times — векторное произведение.

В частности,

\left(a, 0\right)\left(0, \vec{v}\right)=\left(0, \vec{v}\right)\left(a, 0 \right)= \left(0, a\vec{v}\right)
\left(a, 0\right)\left(b, 0\right)=\left(ab, 0\right)\,
\left(0, \vec{u} \right)\left(0, \vec{v}\right)= \left( - \vec{u}\cdot\vec{v} , \vec{u}\times\vec{v}\right)

Заметим, что

Через комплексные числа

Кватернион можно представить как пару комплексных чисел. Пусть 
j ^ 2 = -1,\,
j \ne \pm i
и 
z, w \in \C
. Тогда кватернион можно записать в виде 
q = z + wj = a + bi + cj + dij
.

Через матричные представления

Вещественными матрицами

Кватернионы также можно определить как вещественные матрицы следующего вида с обычными матричными произведением и суммой:

\begin{pmatrix}
 a & -b    & -c     & -d \\ 
 b & \;\;a & -d     & \;\; c \\
 c & \;\;d & \;\; a & -b \\
 d & -c    & \;\; b & \;\; a 
\end{pmatrix}.

При такой записи:

  • сопряжённому кватерниону соответствует транспонированная матрица:
    
\bar q \mapsto 
Q ^ T
;
  • четвёртая степень модуля кватерниона равна определителю соответствующей матрицы:
    
\left|q \right| ^ 4 =
\det Q
.

Комплексными матрицами

Альтернативно, кватернионы можно определить как комплексные матрицы следующего вида с обычными матричными произведением и суммой:

\begin{pmatrix} \;\;\alpha & \beta \\ -\bar \beta &  \bar \alpha \end{pmatrix}=\begin{pmatrix} \;\;a+bi & c+di \\ -c+di & a-bi \end{pmatrix},

здесь \bar \alpha и \bar \beta обозначают комплексно-сопряжённые числа к \,\alpha и \, \beta.

Такое представление имеет несколько замечательных свойств:

  • комплексному числу соответствует диагональная матрица;
  • сопряжённому кватерниону соответствует сопряжённая транспонированная матрица:
    
\bar q \mapsto 
\bar Q ^ T
;
  • квадрат модуля кватерниона равен определителю соответствующей матрицы:
    
\left|q \right| ^ 2 =
\det Q
.

Связанные объекты и операции

Для кватерниона

\,q=a+bi+cj+dk

кватернион \,a называется скалярной частью \,q, а кватернион \,u=bi+cj+dk — векторной частью. Если \,u=0, то кватернион называется чисто скалярным, а при \,a=0 — чисто векторным.

Сопряжение

Для кватерниона \,q. сопряжённым называется:

\bar q=a-bi-cj-dk

Сопряжённое произведение есть произведение сопряжённых в обратном порядке:

 \overline {pq} = \bar q \bar p

Для кватернионов справедливо равенство

 \overline {p} =-\frac 12 (p+ipi+jpj+kpk)

Модуль

Так же, как и для комплексных чисел,

 \left|q \right| =\sqrt{q\bar q}=\sqrt{a^2+b^2+c^2+d^2}

называется модулем \,q. Если \, \left|q \right| =1, то \,q называется единичным кватернионом.

В качестве нормы кватерниона обычно рассматривают его модуль:  \left\|z \right\| =
\left |z \right | .

Таким образом, на множестве кватернионов можно ввести метрику. Кватернионы образуют метрическое пространство, изоморфное \R^4 с евклидовой метрикой.

Кватернионы с модулем в качестве нормы образуют банахову алгебру.

Из тождества четырёх квадратов вытекает, что  \left|p\cdot q \right| = \left|p \right| \cdot \left|q \right| , иными словами, кватернионы обладают мультипликативной нормой и образуют ассоциативную алгебру с делением.

Обращение умножения (деление)

Кватернион, обратный по умножению к q, вычисляется так:  q^{-1} = \frac {\bar q} {\left|q \right| ^ 2} .

Алгебраические свойства

Четыре базисных кватерниона и четыре противоположных им по знаку образуют по умножению группу кватернионов (порядка 8). Обозначается:

 Q_8 = \left\{\pm 1, \pm i, \pm j, \pm k \right\} .

Множество кватернионов является примером кольца с делением.

Множество кватернионов образует четырёхмерную ассоциативную алгебру с делением над полем вещественных (но не комплексных) чисел. Вообще  \mathbb R,  \mathbb C,  \mathbb H являются единственными конечномерными ассоциативными алгебрами с делением над полем вещественных чисел[2].

Некоммутативность умножения кватернионов приводит к неожиданным последствиям. Например, количество различных корней полиномиального уравнения над множеством кватернионов может быть больше, чем степень уравнения. В частности, уравнение 
q^2 + 1 = 0 имеет бесконечно много решений — это все единичные чисто векторные кватернионы.

Кватернионы и повороты пространства

Организация трёх степеней свободы, но окончательная свобода меньших колец зависит от положения больших колец

Кватернионы, рассматриваемые как алгебра над \scriptstyle\Bbb R, образуют четырёхмерное вещественное векторное пространство. Любой поворот этого пространства относительно \,0 может быть записан в виде q\mapsto \xi q \zeta, где \,\xi и \,\zeta — пара единичных кватернионов, при этом пара \,\left(\xi,\zeta\right) определяется с точностью до знака, то есть один поворот определяют в точности две пары — \,\left(\xi,\zeta\right) и \,\left(-\xi,-\zeta\right). Из этого следует, что группа Ли SO\left(\R,4\right) поворотов \R^4 есть факторгруппа S^3\times S^3/\Z_2, где \,S^3 обозначает мультипликативную группу единичных кватернионов.

Чисто векторные кватернионы образуют трёхмерное вещественно векторное пространство. Любой поворот пространства чисто векторных кватернионов относительно \,0 может быть записан в виде u\mapsto \xi u \bar\xi, где \,\xi — некоторый единичный кватернион. Соответственно, SO\left(\R,3\right)=S^3/\Z_2, в частности, SO\left(\R,3\right) диффеоморфно \R \mathrm{P}^3.

«Целые» кватернионы

В качестве нормы кватерниона выберем квадрат его модуля: 
\left\|z \right\| = \left |z \right | ^ 2 .

Целыми по Гурвицу (также engl) принято называть кватернионы a + bi + cj + dk такие, что все 2a, 2b, 2c, 2d — целые и одинаковой чётности.

Целый кватернион называется

  • чётным
  • нечётным
  • простым

если таким же свойством обладает его норма.

Целый кватернион называется примитивным, если он не делится ни на какое натуральное число, кроме 1, нацело (иными словами, 
\gcd \left(2a, 2b, 2c, 2d \right) \le 2
).

Целые единичные кватернионы

Существует 24 целых единичных кватерниона:

 \pm 1,  \pm i,  \pm j,  \pm k,
 \frac {\pm 1 \pm i \pm j \pm k } {2} .

Они образуют группу по умножению и лежат в вершинах правильного четырёхмерного многогранника — кубооктаэдра (не путать с трёхмерным многогранником-кубооктаэдром).

Разложение на простые сомножители

Для примитивных кватернионов верен аналог основной теоремы арифметики.

Теорема.[3] Для любого фиксированного порядка множителей в разложении нормы кватерниона N(q) в произведение простых целых положительных чисел N(q) = p_1 p_2 ... p_n существует разложение кватерниона q в произведение простых кватернионов q = q_1 q_2 ... q_n такое, что N(q_i) = p_i. Причём данное разложение единственно по модулю домножения на единицы — это значит, что любое другое разложение будет иметь вид


q = 
\left(q_1 \epsilon_1 \right)
\left(\bar\epsilon_1 q_2 \epsilon_2 \right)
\left(\bar\epsilon_2 q_3 \epsilon_3 \right)
...
\left(\bar\epsilon_{n-1} q_n \right)
,

где 
\epsilon_1, 
\epsilon_2, 
\epsilon_3, … 
\epsilon_{n-1} — целые единичные кватернионы.

Например, примитивный кватернион q=(1+i)^2(1+i+j)(2+i) имеет норму 60, значит, по модулю домножения на единицы он имеет ровно 12 разложений в произведение простых кватернионов, отвечающих 12 разложениям числа 60 в произведений простых:

 60 = 2\cdot2\cdot3\cdot5  \quad   60 = 2\cdot2\cdot5\cdot3  \quad  60 = 2\cdot3\cdot2\cdot5  \quad  60 = 2\cdot5\cdot2\cdot3  \quad  60 = 2\cdot3\cdot5\cdot2  \quad  60 = 2\cdot5\cdot3\cdot2

 60 = 3\cdot2\cdot2\cdot5  \quad   60 = 5\cdot2\cdot2\cdot3  \quad  60 = 3\cdot2\cdot5\cdot2  \quad  60 = 5\cdot2\cdot3\cdot2  \quad  60 = 3\cdot5\cdot2\cdot2  \quad  60 = 5\cdot3\cdot2\cdot2

Общее число разложений такого кватерниона равно 24^3 \cdot 12 = 165888

Функции кватернионного переменного

Вспомогательные функции

Знак кватерниона вычисляется так:


\operatorname {sgn}\, q =
\frac {q} {\left|q \right|}
.

Аргумент кватерниона — это угол поворота четырёхмерного вектора, который отсчитывается от вещественной единицы:

 \arg q = \arccos \frac  {a} {\left|q \right|} .

В дальнейшем используется представление заданного кватерниона q в виде

q = a + \left| \mathbf{u} \right| \mathrm{i} = \left| q \right| \mathrm{e}^{\mathrm{i}\,\mathrm{arg}\,q}

Здесь a — вещественная часть кватерниона, \mathrm{i} = \left| \mathbf{u} \right|^{-1} \mathbf{u}. При этом \mathrm{i}^2 = -1, поэтому проходящая через q и вещественную прямую плоскость имеет структуру алгебры комплексных чисел, что позволяет перенести на случай кватернионов произвольные аналитические функции. Они удовлетворяют стандартным соотношениям, если все аргументы имеют вид a+b\mathrm{i} для фиксированного единичного вектора \mathrm{i}. В случае если требуется рассматривать кватернионы с разным направлением, формулы значительно усложняются, в силу некоммутативности алгебры кватернионов.

Элементарные функции

Стандартное определение аналитических функций на ассоциативной нормированной алгебре основано на разложении этих функций в степенные ряды. Рассуждения, доказывающие корректность определения таких функций, полностью аналогичны комплексному случаю и основаны на вычислении радиуса сходимости соответствующих степенных рядов. Учитывая указанное выше «комплексное» представление для заданного кватерниона, соответствующие ряды можно привести к указанной ниже компактной форме. Здесь приведены лишь некоторые наиболее употребительные аналитические функции, аналогично можно вычислить любую аналитическую функцию. Общее правило таково: если f(a+b\mathrm{i}) = c + d \mathrm{i} для комплексных чисел, то f(q) = c + d \mathbf{i}, где кватернион q рассматривается в «комплексном» представлении q = a + b \mathbf{i}.

Степень и логарифм
 
\exp q = \exp a \left(
\cos \left|\mathbf{u} \right| + \sin \left| \mathbf{u} \right|  \hat{\mathbf{u}}
\right)
 
\ln q = \ln \left|q \right| + \arg q\, \hat{\mathbf{u}}

Отметим, что, как обычно в комплексном анализе, логарифм оказывается определён лишь с точностью до 2\pi  \hat{\mathbf{u}}.

Тригонометрические функции
 
\sin q 
= 
\sin a \,
\operatorname {ch} \left|\mathbf{u} \right| 
+
\cos a \, \operatorname {sh} \left|\mathbf{u} \right| \hat{\mathbf{u}}
 
\cos q 
= 
\cos a \,
\operatorname {ch} \left|\mathbf{u} \right| 
-
\sin a \, \operatorname {sh} \left|\mathbf{u} \right| \hat{\mathbf{u}}
 
\operatorname {tg}\, q 
= \frac{\sin q}{\cos q}

Регулярные функции

Существуют разные способы определения регулярных функций кватернионного переменного. Самый явный — рассмотрение кватернионно дифференцируемых функций, при этом можно рассматривать праводифференцируемые и леводифференцируемые функции, не совпадающие в силу некоммутативности умножения кватернионов. Очевидно, что их теория полностью аналогична. Определим кватернионно леводифференцируемую функцию f как имеющую предел

\frac{df}{dq} = \lim_{h \to 0} \left[ h^{-1}\left(f\left(q+h\right) - f\left(q\right)\right) \right]

Оказывается, что все такие функции имеют в некоторой окрестности точки q вид

f = a + q b

где a,b — постоянные кватернионы. Другой способ основан на использовании операторов

\frac{\partial}{\partial \bar q} = \frac{\partial}{\partial t} + \vec i \frac{\partial}{\partial x} + \vec j \frac{\partial}{\partial y} + \vec k \frac{\partial}{\partial z}
\frac{\partial}{\partial q} = \frac{\partial}{\partial t} - \vec i \frac{\partial}{\partial x} - \vec j \frac{\partial}{\partial y} - \vec k \frac{\partial}{\partial z}

и рассмотрении таких кватернионных функций f, для которых[4]

\frac{\partial f}{\partial \bar q} = 0

что полностью аналогично использованию операторов \frac{\partial}{\partial \bar z} и \frac{\partial}{\partial z} в комплексном случае. При этом получаются аналоги интегральной теоремы Коши, теории вычетов, гармонических функций и рядов Лорана для кватернионных функций[5].

Производная Гато

Производная Гато функции кватернионного переменного определена согласно формуле

\partial f(x)(a)=\lim_{t\to 0}(t^{-1}(f(x+ta)-f(x)))

Производная Гато является аддитивным отображением приращения аргумента и может быть представлена в виде[6]

\partial f(x)(dx)=
\frac{{}_{(s)0}\partial f(x)}{\partial x}
dx
\frac{{}_{(s)1}\partial f(x)}{\partial x}

Здесь предполагается суммирование по индексу s. Число слагаемых зависит от выбора функции f. Выражения \frac{{}_{(s)0}\partial f(x)}{\partial x} и \frac{{}_{(s)1}\partial f(x)}{\partial x} называются компонентами производной.

Виды умножений

Умножение Грассмана

Так по-другому называется общепринятое умножение кватернионов (pq).

Евклидово умножение

Отличается от общепринятого тем, что вместо первого сомножителя берется сопряжённый к нему: \bar p q. Оно также некоммутативно.

Скалярное произведение

Аналогично одноимённой операции для векторов:

 
p \cdot q = \frac{\bar p q + \bar q p}{2}
.

Эту операцию можно использовать для выделения одного из коэффициентов, например, 
\left(a + bi + cj + dk\right) \cdot i = b
.

Определение модуля кватерниона можно видоизменить:

 \left|p \right| = \sqrt{p \cdot p} .

Внешнее произведение

	
\operatorname {Outer}\left(p, q\right) = \frac {\bar p q - \bar q p} {2}
.

Используется не очень часто, тем не менее рассматривается в дополнение к скалярному произведению.

Векторное произведение

Аналогично одноимённой операции для векторов. Результатом является тоже вектор:

 
p \times q = \frac{pq - qp}{2}.

Из истории

Памятная табличка на мосту Брум Бридж в Дублине: «Здесь на прогулке, 16 октября 1843 года, во вспышке гения, сэр Уильям Роуэн Гамильтон открыл формулу перемножения кватернионов»[7]

Система кватернионов была впервые опубликована Гамильтоном в 1843 году. Историки науки также обнаружили наброски по этой теме в неопубликованных рукописях Гаусса, относящихся к 18191820 годам.[8]

Бурное и чрезвычайно плодотворное развитие комплексного анализа в XIX веке стимулировало у математиков интерес к следующей задаче: найти новый вид чисел, аналогичный по свойствам комплексным, но содержащий не одну, а две мнимые единицы. Предполагалось, что такая модель будет полезна при решении пространственных задач математической физики. Однако работа в этом направлении оказалась безуспешной.

Новый вид чисел был обнаружен ирландским математиком Уильямом Гамильтоном в 1843 году, и он содержал не две, как ожидалось, а три мнимые единицы. Гамильтон назвал эти числа кватернионами. Позднее Фробениус строго доказал (1877) теорему, согласно которой расширить комплексное поле до поля или тела с двумя мнимыми единицами невозможно.

Несмотря на необычные свойства новых чисел (их некоммутативность), эта модель довольно быстро принесла практическую пользу. Максвелл использовал компактную кватернионную запись для формулировки своих уравнений электромагнитного поля.[9] Позднее на основе алгебры кватернионов был создан трёхмерный векторный анализ (Гиббс, Хевисайд).

Новые результаты и направления исследований

Кватернионы и метрика Минковского

Как алгебра над \scriptstyle\Bbb R, кватернионы образуют вещественное векторное пространство \scriptstyle\Bbb H, снабжённое тензором третьего ранга S типа (1,2), иногда называемого структурным тензором. Как всякий тензор такого типа, S отображает каждую 1-форму t на \scriptstyle\Bbb H и пару векторов \left(a, b\right) из \scriptstyle\Bbb H в вещественное число S\left(t, a, b\right). Для любой фиксированной 1-формы t S превращается в ковариантный тензор второго ранга, который, в случае его симметрии, становится скалярным произведением на \scriptstyle\Bbb H. Поскольку каждое вещественное векторное пространство является также вещественным линейным многообразием, такое скалярное произведение порождает тензорное поле, которое, при условии его невырожденности, становится (псевдо- или собственно-)евклидовой метрикой на \scriptstyle\Bbb H. В случае кватернионов это скалярное произведение индефинитно, его сигнатура не зависит от 1-формы t, а соответствующая псевдоевклидова метрика есть метрика Минковского[10]. Эта метрика автоматически продолжается на группу Ли ненулевых кватернионов вдоль её левоинвариантных векторных полей, образуя так называемую закрытую ФЛРУ (Фридман — Леметр — Робертсон — Уолкер) метрику[11] — важное решение уравнений Эйнштейна. Эти результаты проясняют некоторые аспекты проблемы совместимости квантовой механики и общей теории относительности в рамках теории квантовой гравитации[12].

См. также

1,\;2,\;\ldots Натуральные числа
0,\;1,\;-1,\;\ldots Целые числа
1,\;-1,\;\frac{1}{2},\;\frac{2}{3},\;0{,}12,\;\ldots Рациональные числа
1,\;-1,\;\frac{1}{2},\;0{,}12,\;\pi,\;\sqrt{2},\;\ldots Вещественные числа
-1,\;\frac{1}{2},\;0{,}12,\;\pi,\;3i+2,\;e^{i\pi/3},\;\ldots Комплексные числа
1,\;i,\;j,\;k,\;\pi j-\frac{1}{2}k,\;\dots Кватернионы

Примечания

  1. Кватернионы в программировании игр (GameDev.ru)
  2. Теорема Фробениуса
  3. John C. Baez. On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, by John H. Conway and Derek A. Smith  (англ.). — Review. Архивировано из первоисточника 22 августа 2011. Проверено 7 февраля 2009.
  4. R. Fueter Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen, — Comment. math. Helv. 8, pp.371—378, 1936.
  5. A. Sudbery Quaternionic Analysis, — Department of Mathematics, University of York, 1977.
  6. Выражение \frac{{}_{(s)p}\partial f(x)}{\partial x} не является дробью и должно восприниматься как символ оператора. Данное обозначение предложено для того, чтобы сохранить преемственность с классическим анализом.
  7. В письме своему сыну Арчибальду от 5 августа 1865 года Гамильтон пишет: «…Но, конечно, надпись уже стёрлась» (Л. С. Полак Вариационные принципы механики, их развитие и применение в физике.— М.: Физматгиз, 1960.— С.103-104)
  8. Бурбаки Н.. Архитектура математики. Очерки по истории математики. — М.: Иностранная литература, 1963. — С. 68.
  9. А. Н. Крылов Отзыв о работах академика П. П. Лазарева.
  10. Vladimir Trifonov A Linear Solution of the Four-Dimensionality Problem // Euruphysics Letters, — IOP Publishing, V. 32, № 8 / 12.1995. — С. 621—626 — DOI: 10.1209/0295-5075/32/8/001.
  11. Vladimir Trifonov Natural Geometry of Nonzero Quaternions // International Journal of Theoretical Physics, — Springer Netherlands, V. 46, № 2 / 02.2007. — С. 251—257 — ISSN 0020-7748 (Print) ISSN 1572-9575 (Online).
  12. Vladimir Trifonov GR-Friendly Description of Quantum Systems // International Journal of Theoretical Physics, — Springer Netherlands, V. 47, № 2 / 02.2008. — С. 492—510 — ISSN 0020-7748 (Print) ISSN 1572-9575 (Online).

Литература


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?
Синонимы:

Полезное


Смотреть что такое "Кватернион" в других словарях:

  • КВАТЕРНИОН — (от лат. quaterni по четыре) обобщение понятия комплексного числа. Кватернион имеет вид: a+bi+cj+dk, где a, b, c, d действительные числа, а i, j, k три специальные единицы, аналогичные мнимой единице. Для кватерниона справедливы все основные… …   Большой Энциклопедический словарь

  • КВАТЕРНИОН — (греч.). Четырехчленное выражение, получаемое от умножения двух векторов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 …   Словарь иностранных слов русского языка

  • кватернион — сущ., кол во синонимов: 1 • число (51) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • кватернион — а, м. quaternion m., нем. Quaternionen.<лат. quaterni по четыре. мат. Гиперкомплексные числа более общая, чем комплексныя числа, система чисел, содержащая четыре единицы, для которых справедливы все основные законы действий, кроме… …   Исторический словарь галлицизмов русского языка

  • кватернион — (от лат. quaterni  по четыре), обобщение понятия комплексного числа. Кватернион имеет вид: а + bi + cj + dk, где а, b, c, d  действительные числа, а i, j, k  три специальных единицы, аналогичные мнимой единице. Для кватерниона справедливы все… …   Энциклопедический словарь

  • КВАТЕРНИОН — гиперкомплексное число, геометрически реализуемое в четырехмерном пространстве. Система К. предложена в 1843 У. Гамильтоном (W. Hamilton). К. явились исторически первым примером гицеркомплексной системы, возникшей при попытках найти обобщение… …   Математическая энциклопедия

  • Кватернион — Исчисление К., основанное Вильямом Ровэном Гамильтоном (см.), представляет собою теорию векторов (см.), основанную на выражении вектора тричленом вида xi + yj + zk, в котором x, y, z суть величины проекций вектора на ортогональные оси координат,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • кватернион — кватернион, кватернионы, кватерниона, кватернионов, кватерниону, кватернионам, кватернион, кватернионы, кватернионом, кватернионами, кватернионе, кватернионах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») …   Формы слов

  • КВАТЕРНИОН — (от лат. quatеrni по четыре), обобщение понятия комплексного числа. К. имеет вид: a +bi + cj + dk, где а, b, с, d действит. числа, а i,j,k три спец. единицы, аналогичные мнимой единице. Для К. справедливы все осн. законы действии, кроме… …   Естествознание. Энциклопедический словарь

  • Кватернион — (от лат. quaterni по четыре) листы пергамена, сложенные пополам и сброшюрованные в тетради по четыре таких листа. В дальнейшем так стали называть всякую тетрадь, независимо от числа листов в ней. Затем из к. составляли рукописную книгу …   Средневековый мир в терминах, именах и названиях


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»