Евклидово пространство

Евклидово пространство

Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно n-мерное евклидово пространство обозначается \mathbb E^n, хотя часто используется не вполне приемлемое обозначение  \mathbb R^n .

1. Конечномерное гильбертово пространство, то есть конечномерное вещественное векторное пространство  \mathbb R^n с введённым на нём (положительно определенным) скалярным произведением, порождающим норму:

\|x\|=\sqrt{\langle x, x \rangle},

в простейшем случае (евклидова норма):

\|x\|=\sqrt{x_1^2+x_2^2+\dots +x_n^2} = \sqrt{\sum_{k=1}^n x_k^2}

где x=(x_1,x_2,\dots, x_n) (в евклидовом пространстве всегда можно выбрать базис, в котором верен именно этот простейший вариант).

2. Метрическое пространство, соответствующее пространству описанному выше. То есть  \mathbb R^n с метрикой, введённой по формуле:

\rho(x,y)=\|x-y\|=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\dots+(x_n-y_n)^2} = \sqrt{\sum_{k=1}^n (x_k-y_k)^2},

где x=(x_1,x_2,\dots, x_n) и  y=(y_1,y_2,\dots, y_n)\in \mathbb R^n.

Содержание

Связанные определения

  • Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика.
  • Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.
  • Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) — каковым, например, является риманово многообразие нулевой кривизны.

Примеры

Наглядными примерами евклидовых пространств могут служить пространства:

  • \mathbb E^1 размерности 1 (вещественная прямая)
  • \mathbb E^2 размерности 2 (евклидова плоскость)
  • \mathbb E^3 размерности 3 (евклидово трехмерное пространство)
  • Евклидово пространство можно считать современной интерпретацией и обобщением (так как оно допускает размерности больше трех) классической (Евклидовой) геометрии.

Более абстрактный пример:

  • пространство вещественных многочленов p(x) степени, не превосходящей n, со скалярным произведением, определенным как интеграл произведения по конечному отрезку (или по всей прямой, но с быстро спадающей весовой функцией, например e^{-x^2})

Вариации и обобщения

См. также

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое "Евклидово пространство" в других словарях:

  • ЕВКЛИДОВО ПРОСТРАНСТВО — конечномерное векторное пространство с положительно определённым скалярным произведением. Является непосредств. обобщением обычного трёхмерного пространства. В Е. п. существуют декартовы координаты, в к рых скалярное произведение ( ху )векторов х …   Физическая энциклопедия

  • ЕВКЛИДОВО ПРОСТРАНСТВО — пространство, свойства которого изучаются в евклидовой геометрии. В более широком понимании евклидовым пространством называется n мерное векторное пространство, в котором определено скалярное произведение …   Большой Энциклопедический словарь

  • Евклидово пространство — пространство, свойства которого описываются аксиомами евклидовой геометрии. Упрощенно можно определить евклидово пространство, как пространство на плоскости или в трехмерном объеме, в которых заданы прямоугольные (декартовы) координаты, а… …   Начала современного естествознания

  • Евклидово пространство — [Eu­c­lidean space] см. Многомерное (n мерное) векторное пространство, Векторное (линейное) пространство …   Экономико-математический словарь

  • евклидово пространство — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN Cartesian space …   Справочник технического переводчика

  • евклидово пространство — пространство, свойства которого изучаются в евклидовой геометрии. В более широком понимании евклидовым пространством называют n мерное векторное пространство, в котором определено скалярное произведение. * * * ЕВКЛИДОВО ПРОСТРАНСТВО ЕВКЛИДОВО… …   Энциклопедический словарь

  • ЕВКЛИДОВО ПРОСТРАНСТВО — пространство, свойства к рого изучаются в евклидовой геометрии. В более широком понимании Е. п. наз. n мерное векторное пространство, в к ром определено скалярное произведение …   Естествознание. Энциклопедический словарь

  • ЕВКЛИДОВО ПРОСТРАНСТВО — пространство, свойства к рого описываются аксиомами евклидовой геометрии. В более общем смысле Е. п. конечномерное действительное векторное пространствоRn со скалярным произведением( х, у), х, к рое в надлежащим образом выбранных координатах… …   Математическая энциклопедия

  • Евклидово пространство — (в математике)         пространство, свойства которого описываются аксиомами евклидовой геометрии (См. Евклидова геометрия). В более общем смысле Е. п. называется n мepное Векторное пространство, в котором возможно ввести некоторые специальные… …   Большая советская энциклопедия

  • ЕВКЛИДОВО ПРОСТРАНСТВО — [по имени др. греч. математика Евклида (Eukleides; 3 в. до н. э.)] пространство, в т. ч. многомерное, в к ром возможно ввести координаты х1,..., хп так, что расстояние р (М ,М ) между точками М (х1 ..., х n) и М (х 1 , .... xn ) может быть… …   Большой энциклопедический политехнический словарь

Книги

Другие книги по запросу «Евклидово пространство» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»