- Распределение Парето
-
Распределение Парето Плотность вероятности
Функция распределения
Обозначение {{{notation}}} Параметры - коэффициент масштаба
Носитель Плотность вероятности Функция распределения Математическое ожидание , если Медиана Мода Дисперсия при Коэффициент асимметрии при Коэффициент эксцесса при Информационная энтропия Производящая функция моментов не определена Характеристическая функция Распределе́ние Паре́то в теории вероятностей — двухпараметрическое семейство абсолютно непрерывных распределений, являющихся степенными. Называется по имени Вилфредо Парето. Встречается при исследовании различных явлений, в частности, социальных, экономических, физических и других. Вне области экономики иногда называется также распределением Брэдфорда.
Содержание
Определение
Пусть случайная величина такова, что её распределение задаётся равенством:
- ,
где . Тогда говорят, что имеет распределение Парето с параметрами и . Плотность распределения Парето имеет вид:
Моменты
Моменты случайной величины, имеющей распределение Парето, задаются формулой:
- ,
откуда в частности:
- ,
- .
Приложения
Вилфредо Парето изначально использовал это распределение для описания распределения благосостояния, а также распределения дохода[1]. Его правило 20 к 80 (которое гласит: 20 % популяции владеет 80 % богатства) однако зависит от конкретной величины k, и утверждается, что фактически встречаются существенные количественные отклонения, например, данные самого Парето по Британии в Cours d'économie politique говорят, что там примерно 30 % населения владеет 70 % общего дохода.
Распределение Парето встречается не только в экономике. Можно привести следующие примеры:
- В лингвистике распределение Парето известно под именем закона Ципфа (для разных языков показатель степени может несколько различаться, также существует небольшое отклонение от простой степенной зависимости у самых частотных слов, однако в целом степенной закон описывает это распределение достаточно хорошо). Частными проявлениями этой закономерности можно считать:
- Зависимость абсолютной частоты слов (сколько всего раз каждое конкретное слово встретилось) в достаточно длинном тексте от ранга (порядкового номера при упорядочении слов по абсолютной частоте). Степенной характер остается вне зависимости от того, приводятся ли слова к начальной форме или берутся из текста как есть.
- Аналогичная кривая для популярности имен.
- Распределение размера населенных пунктов.[2]
- Распределение размера файла в интернет-траффике по TCP-протоколу.[2]
См. также
Примечания
- ↑ Pareto, Vilfredo, Cours d’Économie Politique: Nouvelle édition par G.-H. Bousquet et G. Busino, Librairie Droz, Geneva, 1964, pages 299—345.
- ↑ 1 2 William J. Reed et al., «The Double Pareto-Lognormal Distribution — A New Parametric Model for Size Distributions», Communications in Statistics : Theory and Methods 33(8), 1733—1753, 2004 p 18 et seq.
Одномерные Многомерные Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | дискретное равномерное мультиномиальное Абсолютно непрерывные: Бета | Вейбулла | Гамма | гиперэкспоненциальное | Колмогорова | Коши | Лапласа | логнормальное | нормальное (Гаусса) | логистическое | Накагами |Парето | полукруговое | непрерывное равномерное | Райса | Рэлея | Стьюдента | Фишера | хи-квадрат | экспоненциальное | variance-gamma многомерное нормальное | копула Категория:- Непрерывные распределения
Wikimedia Foundation. 2010.