- Многомерное нормальное распределение
-
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения.
Определения
Случайный вектор
имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:
- Произвольная линейная комбинация компонентов вектора
имеет нормальное распределение или является константой.
- Существует вектор независимых стандартных нормальных случайных величин
, вещественный вектор
и матрица
размерности
, такие что:
.
- Существует вектор
и неотрицательно определённая симметричная матрица
размерности
, такие что характеристическая функция вектора
имеет вид:
.
Замечания
- Если рассматривать только распределения с невырожденной ковариационной матрицей, то эквивалентным будет также следующее определение:
- Существует вектор
и неотрицательно определённая симметричная матрица
размерности
, такие что плотность вероятности вектора
имеет вид:
-
,
- где
— определитель матрицы
, а
— матрица обратная к
- Вектор
является вектором средних значений
, а
— его ковариационная матрица.
- В случае
, многомерное нормальное распределение сводится к обычному нормальному распределению.
- Если случайный вектор
имеет многомерное нормальное распределение, то пишут
.
Свойства многомерного нормального распределения
- Если вектор
имеет многомерное нормальное распределение, то его компоненты
имеют одномерное нормальное распределение. Обратное, вообще говоря, неверно (см. пример [1])!
- Если случайные величины
имеют одномерное нормальное распределение и совместно независимы, то случайный вектор
имеет многомерное нормальное распределение. Матрица ковариаций
такого вектора диагональна.
- Если
имеет многомерное нормальное распределение, и его компоненты попарно некоррелированы, то они независимы. Однако, если только компоненты
имеют одномерное нормальное распределение и попарно не коррелируют, то отсюда не следует, что они независимы.
- Контрпример. Пусть
, а
с равными вероятностями. Тогда если
, то корреляция
и
равна нулю. Однако, эти случайные величины зависимы.
- Многомерное нормальное распределение устойчиво относительно линейных преобразований. Если
, а
— произвольная матрица размерности
, то
.
Одномерные Многомерные Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | дискретное равномерное мультиномиальное Абсолютно непрерывные: Бета | Вейбулла | Гамма | гиперэкспоненциальное | Колмогорова | Коши | Лапласа | логнормальное | нормальное (Гаусса) | логистическое | Накагами |Парето | полукруговое | непрерывное равномерное | Райса | Рэлея | Стьюдента | Фишера | хи-квадрат | экспоненциальное | variance-gamma многомерное нормальное | копула Категория:- Непрерывные распределения
- Произвольная линейная комбинация компонентов вектора
Wikimedia Foundation. 2010.