Распределение (теория вероятностей)

Распределение (теория вероятностей)

Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их принятия.

Содержание

Определение

Определение 1. Пусть задано вероятностное пространство (\Omega, \mathcal{F}, \mathbb{P}), и на нём определена случайная величина X:\Omega \to \mathbb{R}. В частности, по определению, X является измеримым отображением измеримого пространства (\Omega, \mathcal{F}) в измеримое пространство (\mathbb{R},\mathcal{B}(\mathbb{R})), где \mathcal{B}(\mathbb{R}) обозначает борелевскую сигма-алгебру на \mathbb{R}. Тогда случайная величина X индуцирует вероятностную меру \mathbb{P}^X на \mathbb{R} следующим образом:

\mathbb{P}^X(B) = \mathbb{P}(X^{-1}(B)),\; \forall B\in \mathcal{B}(\mathbb{R}).

Мера \mathbb{P}^X называется распределением случайной величины X.

Способы задания распределений

Определение 2. Функция F_X(x) = \mathbb{P}^X((-\infty,x]) = \mathbb{P}(X \leqslant x) называется (кумулятивной) функцией распределения случайной величины X. Из свойств вероятности вытекает

Теорема 1. Функция распределения FX(x) любой случайной величины удовлетворяет следующим трем свойствам:

  1. FX - функция неубывающая;
  2. \lim_{x\to -\infty} F_X(x) = 0,\; \lim_{x\to \infty}F_X(x) = 1;
  3. FX непрерывна справа.

Из того факта, что борелевская сигма-алгебра на вещественной прямой порождается семейством интервалов вида \{(-\infty,x]\}_{x\in \mathbb{R}}, вытекает

Теорема 2. Любая функция F(x), удовлетворяющая трём свойствам, перечисленным выше, является функцией распределения для какого-то распределения \mathbb{P}^X.

Для вероятностных распределений, обладающих определенными свойствами, существуют более удобные способы его задания.

Дискретные распределения

Определение 2. Случайная величина называется простой или дискретной, если она принимает не более, чем счётное число значений. То есть X(\omega) = a_i,\; \forall \omega \in A_i, где \{A_i\}_{i=1}^{\infty} - разбиение Ω.

Распределение простой случайной величины тогда по определению задаётся: \mathbb{P}^X(B) = \sum_{i:a_i \in B} \mathbb{P}(A_i). Введя обозначение p_i = \mathbb{P}(A_i), можно задать функцию p(ai) = pi. Очевидно, что \sum_{i=1}^{\infty}p_i = 1. Используя счётную аддитивность \mathbb{P}, легко показать, что эта функция однозначно определяет распределение X.

Определение 3. Функция p(ai) = pi, где \sum_{i=1}^{\infty} p_i = 1 часто называется дискретным распределением.

Пример 1. Пусть функция p задана таким образом, что p(-1) = \frac{1}{2} и p(1) = \frac{1}{2}. Эта функция задаёт распределение случайной величины X такой, что \mathbb{P}(X=\pm 1) = \frac{1}{2}.

Теорема 3. Дискретное распределение обладает следующими свойствами:

  1. p_i \geqslant 0;
  2. pi = 1
    i
    .

Непрерывные распределения

Непрерывное распределение — распределение вероятностей, не имеющее атомов. Любое распределение вероятностей есть смесь дискретного и непрерывного.

Абсолютно непрерывные распределения

Основная статья: Плотность вероятности

Определение 4. Распределение случайной величины X называется абсолютно непрерывным, если существует неотрицательная функция f_X:\mathbb{R}\to \mathbb{R}_+, такая что \mathbb{P}^X(B) \equiv \mathbb{P}(X\in B) = \int\limits_B f_X(x)\, dx. Функция fX тогда называется плотностью распределения случайной величины X.

Пример 2. Пусть f(x) = 1, когда 0\leqslant x \leqslant 1, и 0 иначе. Тогда \mathbb{P}(a < X < b) = \int\limits_a^b 1\, dx = b-a, если (a,b) \subset [0,1].

Очевидно, что для любой плотности распределения fX верно равенство \int\limits_{-\infty}^{\infty} f_X(x)\, dx = 1. Верна и обратная

Теорема 4. Если функция f:\mathbb{R}\to \mathbb{R} такая, что:

  1. f(x) \geqslant 0,\; \forall x \in \mathbb{R};
  2. \int\limits_{-\infty}^{\infty} f(x)\, dx = 1,

то существует распределение \mathbb{P}^X такое, что f(x) является его плотностью.

Просто применение формулы Ньютона-Лейбница приводит к простому соотношению между кумулятивной функцией и плотностью абсолютно непрерывного распределения.

Теорема 5. Если f(x) — непрерывная плотность распределения, а F(x) — его кумулятивная функция, то

  1. F'(x) = f(x),\; \forall x \in \mathbb{R},
  2. F(x) = \int\limits_{-\infty}^x f(t)\, dt.
Image:Bvn-small.png Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | Лапласа | логнормальное | Лоренца | нормальное (Гаусса) | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
править

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Распределение (теория вероятностей)" в других словарях:

  • ТЕОРИЯ ВЕРОЯТНОСТЕЙ — математич. наука позволяющая по вероятностям одних событий случайных (см.) находить вероятности случайных событий, связанных к. л. образом с первыми. Современная Т.в. основана на аксиоматике (см. Метод аксиоматический) А. Н. Колмогорова. На… …   Российская социологическая энциклопедия

  • Независимость (теория вероятностей) — У этого термина существуют и другие значения, см. Независимость (значения). В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные …   Википедия

  • Степени свободы (теория вероятностей) — У этого термина существуют и другие значения, см. Степени свободы (значения). Количество степеней свободы  это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы… …   Википедия

  • ВЕРОЯТНОСТЕЙ ТЕОРИЯ — раздел математики, в к ром строят и изучают матем. модели случайных явлении. Случайность присуща в той или иной степени подавляющему большинству протекающих в природе процессов. Обычно она присутствует там, где существ. влияние на ход процесса… …   Физическая энциклопедия

  • РАСПРЕДЕЛЕНИЕ — осн. понятие вероятностей теории и матем. статистики. Р. полностью характеризует случайную величину. Пусть x дискретная случайная величина, принимающая (конечное или бесконечное) счётное множество значений {xn}. Если вероятность реализации… …   Физическая энциклопедия

  • Теория случайных матриц — Теория случайных матриц  раздел математической статистики, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило задаётся закон распределения элементов. При этом изучается статистика собственных… …   Википедия

  • Распределение Пуассона — Функция вероятности …   Википедия

  • РАСПРЕДЕЛЕНИЕ — случайной величины X, принимающей целые неотрицательные значения r: где m > 0 параметр. Ср. значение М(Х) =m, дисперсия D(X) =m, производящая функция G(z) = = exp[m(z 1)]. П. р. определяет вероятность наблюдения r событий в данный интервал… …   Физическая энциклопедия

  • ВЕРОЯТНОСТЕЙ ТЕОРИЯ — математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных к. л. образом с первыми. Утверждение о том, что к. л. событие наступает с вероятностью, равной, напр., 1/2, еще не… …   Математическая энциклопедия

  • ВЕРОЯТНОСТЕЙ ТЕОРИЯ — занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о разумности ожидания наступления одних событий по сравнению с другими, хотя приписывание численных значений вероятностям событий часто бывает излишним… …   Энциклопедия Кольера


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»