- Додекагон
-
Правильный додекагон Додекаго́н (греч. δώδεκα — двенадцать и греч. γωνία — угол) — многоугольник с 12 углами и 12 сторонами. Как правило, додекагоном называют правильный многоугольник, то есть такой, у которого все стороны и все углы равны (в случае додекагона углы равны 150°). Правильный додекагон используется в некоторых странах в качестве формы для монет.
Содержание
Правильный додекагон
Площадь правильного додекагона со стороной a находится по формуле:
Или, при радиусе описанной окружности R:
Или, при радиусе вписанной окружности r:
Монеты
Схема построения додекагона с помощью циркуля и линейки
Правильный двенадцатиугольник, согласно теореме Гаусса — Ванцеля, относится к многоугольникам, которые можно построить с помощью циркуля и линейки.
См. также
Ссылки
Додекагон в Викисловаре? Додекагон на Викискладе? Многоугольники По числу вершин 1-10 Одноугольник • Двуугольник • Треугольник • Четырёхугольник (Дельтоид) • Пятиугольник • Шестиугольник • Семиугольник • Восьмиугольник • Девятиугольник • Десятиугольник 11-20 Одиннадцатиугольник (англ.) • Двенадцатиугольник Правильные Выпуклые Треугольник • Четырёхугольник • Пятиугольник • Шестиугольник • Семиугольник • Восьмиугольник • Девятиугольник • ... • 17-угольник • ... • 257-угольник • ... • 65537-угольник Звёздчатая форма Звезды (Пентаграмма • Гексаграмма • Октаграмма) Выпуклые Четырёхугольники: Параллелограмм • Прямоугольник • Ромб • Трапеция
ПланигонСм. также Теория и практика: Принадлежность точки многоугольнику • Теорема Бойяи — Гервина • Теорема Брахмагупты • Теорема Гаусса — Ванцеля • Формула Пика • Теорема о сумме углов многоугольника Категория:- Многоугольники
Wikimedia Foundation. 2010.