Разрыв первого рода

Разрыв первого рода

Непреры́вное отображе́ние или непрерывная функция — это такое отображение, у которого небольшие изменения аргумента приводят к небольшим изменениям значения отображения.

Это понятие определятся немного по-разному в различных разделах математики; наиболее общее определение используется в общей топологии.

Содержание

Определения

Непрерывная числовая функция

  • Пусть дана функция f\colon M\subset\R\to\R, и a\in M. Тогда говорят, что f непрерывна в точке a и пишут f \in C(a), если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta) \Rightarrow (|f(x)-f(a)| < \varepsilon).
  • Пусть дано подмножество N\subset M. Тогда говорят, что f непрерывна на N и пишут f\in C(N), если
    \forall a \in N\quad f\in C(a).

Непрерывное отображение из Rm в Rn

Обобщая одномерный случай, функция f\colon M \subset \mathbb{R}^m \to \mathbb{R}^n называется непрерывной в точке a \in M, если \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in M

\bigl(\|x-a\|_m < \delta\bigr) \Rightarrow \bigl(\|f(x) - f(a)\|_n < \varepsilon\bigr),

где

\|x\|_k \equiv \sqrt{\sum\limits_{i=1}^k x_i^2},\quad x = (x_1,\ldots,x_k)^{\top} \in \mathbb{R}^k — евклидова норма в \mathbb{R}^k.

Непрерывное отображение метрических пространств

В предыдущем определении наличие операции вычитания, точнее линейной структуры, в евклидовых пространствах не играет принципиальной роли. Достаточно лишь иметь возможность измерять расстояния. Множества, на которых указан способ измерять расстояния, называются метрическими пространствами. Отображение f\colon X \to Y метрического пространства (XX) в метрическое пространство (YY) называется непрерывным в точке a, если \forall \varepsilon > 0 \; \exists \delta > 0 \;
\forall x \in X

\Big(\rho_X(x,a) < \delta\Big) \Rightarrow \Big( \rho_Y \bigl(f(x), f(a)\bigr)< \varepsilon \Big).

Непрерывное отображение топологических пространств

В предыдущих определениях важно не наличие точной меры расстояния, а лишь понятия близости. Непрерывное отображение переводит близкие точки в близкие. Множество, в котором указан некоторый набор подмножеств \mathcal{T}, позволяющий говорить о близких точках, называется топологическим пространством. Отображение f\colon X \to Y топологического пространства (X,\mathcal{T}_X) в топологическое пространство (Y,\mathcal{T}_Y) называется непрерывным, если прообраз любого открытого множества открыт:

\forall V \in \mathcal{T}_Y \quad f^{-1}(V) \in \mathcal{T}_X.

Связанные определения

Если функция не является непрерывной в точке a, то говорят, что она в ней разры́вна и пишут f \not\in C(a). Согласно замечанию выше функция может быть разрывной только в предельной точке области определения, и справедливо одно из двух:

  1. Либо предел \lim\limits_{x\to a} f(x) не существует;
  2. Либо он существует, но \lim\limits_{x\to a} f(x) \neq f(a).


Пусть существует \lim\limits_{x\to a} f(x), но a \not\in M или \lim\limits_{x\to a} f(x) \neq f(a). Тогда a называется то́чкой устрани́мого разры́ва. Положив f(a) = \lim\limits_{x\to a} f(x), можно добиться непрерывности функции в этой точке. Такое изменение значения функции в точке, превращающее функцию в непрерывную в этой точке, называется доопределением по непрерывности.

Пусть не сущестует двусторонний предел \lim\limits_{x\to a} f(x), но существуют конечные (и различные) односторонние пределы \lim\limits_{x\to a-} f(x) и \lim\limits_{x\to a+} f(x). Тогда f\not\in C(a), и a называется то́чкой разры́ва пе́рвого ро́да.

Если f\not\in C(a), и a не является точкой устранимого разрыва или разрыва первого рода, то есть хотя бы один односторонний предел не существует или бесконечен, то она называется то́чкой разры́ва второ́го ро́да.

Свойства

\left(a \in M\setminus M'\right) \Rightarrow \bigl(f\in C(a)\bigr).
  • В предельной точке области определения непрерывность функции эквивалентна существованию предела, равного значению функции в точке:
\bigl( a\in M \cap M' \bigr) \Rightarrow \bigl( f\in C(a) \Leftrightarrow \lim\limits_{x \to a}f(x) = f(a)\bigr).

Вещественнозначаные функции

  • Функция сохраняет знак в окрестности точки непрерывности. Пусть f\in C(a),\; f(a) > 0. Тогда существует окрестность U(a) такая, что
\forall x \in U(a)\cap M\quad f(x) > 0.

Примеры

f(x) = \left\{
\begin{matrix}
\frac{\sin x}{x}, & x \neq 0 \\
0, & x = 0
\end{matrix}
\right.

непрерывна в любой точке x \neq 0. Точка x = 0 является точкой устранимого разрыва, ибо

\lim\limits_{x \to 0} f(x) = \lim\limits_{x \to 0} \frac{\sin x}{x} = 1 \neq 0 = f(0).
f(x) = \sgn x = \left\{
\begin{matrix}
-1, & x < 0 \\
0, & x = 0 \\
1, & x > 0
\end{matrix}
\right.,\; x\in \mathbb{R}

непрерывна в любом x \neq 0. Точка x = 0 является точкой разрыва первого рода, ибо

\lim\limits_{x \to 0-}f(x) = -1 \neq 1 = \lim\limits_{x \to 0+}f(x)
.

непрерывна в любом x \neq 0.

Вариации и бобщения

Односторнняя непрерывность

  • Пусть дана функция f:M\subset \mathbb{R} \to \mathbb{R}, и a\in M. Тогда говорят, что f непреры́вна спра́ва в точке a, если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta \wedge x\ge a) \Rightarrow (|f(x)-f(a)| < \varepsilon).
  • Говорят, что f непреры́вна сле́ва в точке a, если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta \wedge x\le a) \Rightarrow (|f(x)-f(a)| < \varepsilon).


Замечания

  • Функция непрерывна тогда и только тогда, когда она непрерывна одновременно справа и слева.
  • Функция непрерывна справа в предельной точке области определения тогда и только тогда, когда существует правосторонний предел
\lim\limits_{x \to a+}f(x) = f(a).
  • Функция непрерывна слева в предельной точке области определения тогда и только тогда, когда существует левосторонний предел
(\lim\limits_{x \to a-}f(x) = f(a)).
  • Все базовые свойства непрерывных функций переносятся на односторонне непрерывные функции.

Примеры

  • Функция
f(x) = \left\{
\begin{matrix}
1,& x \geqslant 0\\
0, & x < 0
\end{matrix}
\right.,\quad x\in \mathbb{R}

непрерывна справа (но не слева) в точке x = 0. Во всех других точках она непрерывна.


См. также


Wikimedia Foundation. 2010.

Поможем написать реферат

Полезное


Смотреть что такое "Разрыв первого рода" в других словарях:

  • разрыв первого рода — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN jump [nonremovable] discontinuity …   Справочник технического переводчика

  • Разрыв второго рода — Непрерывное отображение или непрерывная функция это такое отображение, у которого небольшие изменения аргумента приводят к небольшим изменениям значения отображения. Это понятие определятся немного по разному в различных разделах математики;… …   Википедия

  • Разрыв — Разрыв  нарушение непрерывности, целостности, повреждение. Например: Разрыв первого рода и второго рода у функций Произвольный разрыв в механике сплошных сред Разрыв  повреждение мягких тканей организма Геологический разлом, или разрыв… …   Википедия

  • Устранимый разрыв — Непрерывное отображение или непрерывная функция это такое отображение, у которого небольшие изменения аргумента приводят к небольшим изменениям значения отображения. Это понятие определятся немного по разному в различных разделах математики;… …   Википедия

  • Непрерывная функция — Эта статья  о непрерывной числовой функции. О непрерывных отображениях в различных разделах математики см. непрерывное отображение. Непрерывная функция  функция без «скачков», то есть такая, у которой малые изменения… …   Википедия

  • Функция распределения — в теории вероятностей функция, характеризующая распределение случайной величины или случайного вектора. При соблюдении известных условий (см. ниже) полностью определяет случайную величину. Содержание 1 Определение 2 Свойства …   Википедия

  • Кумулятивная функция распределения — (или просто функция распределения) в теории вероятностей однозначно задаёт распределение случайной величины или случайного вектора. Содержание 1 Определение 2 Свойства 2.1 Тождества …   Википедия

  • Фурье ряд —         Тригонометрический ряд, служащий для разложения периодической функции на гармонические компоненты. Если функция f (x) имеет период 2T, то её Ф. р. имеет вид                  где a0, an, bn (n ≥ 1) Фурье коэффициенты. В зависимости от того …   Большая советская энциклопедия

  • Русская литература — I.ВВЕДЕНИЕ II.РУССКАЯ УСТНАЯ ПОЭЗИЯ А.Периодизация истории устной поэзии Б.Развитие старинной устной поэзии 1.Древнейшие истоки устной поэзии. Устнопоэтическое творчество древней Руси с X до середины XVIв. 2.Устная поэзия с середины XVI до конца… …   Литературная энциклопедия

  • Модернизация — (Modernization) Модернизация это процесс изменения чего либо в соответствии с требованиями современности, переход к более совершенным условиям, с помощью ввода разных новых обновлений Теория модернизации, типы модернизации, органическая… …   Энциклопедия инвестора

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»