- Рациональная функция
-
Рациональная функция — это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид
где
,
— многочлены от любого числа переменных.
Частным случаем являются рациональные функции одного переменного:
, где P(x) и Q(x) — многочлены.
Другим частным случаем является отношение двух линейных функций — дробно-линейная функция.Свойства
- Любое выражение, которое можно получить из переменных
с помощью четырёх арифметических действий, является рациональной функцией.
- Множество рациональных функций замкнуто относительно арифметических действий и операции композиции.
- Любая рациональная функция может быть представлена в виде суммы простейших дробей (см. Метод неопределённых коэффициентов), это применяется при аналитическом интегрировании.
Правильные дроби
Различают правильные и неправильные рациональные дроби, по аналогии с обычными числовыми дробями. Рациональная дробь называется правильной, если порядок знаменателя больше порядка числителя, и неправильной, если наоборот.
Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби
Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения
(a — вещественный корень Q(x)) либо
(где
не имеет действительных корней), причём степени k не больше кратности соответствующих корней в многочлене Q(x). На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.
C этим связан метод выделения рациональной части в первообразной от рациональной дроби, который был предложен в 1844 году М. В. Остроградским.
См. также
Категории:- Типы функций
- Элементарные функции
-
Wikimedia Foundation. 2010.