- Висмутовые руды
-
Ви́смут / Bismuthum (Bi) Атомный номер 83 Внешний вид простого вещества Твёрдый хрупкий металл
стального цвета с
розоватым отливомСвойства атома Атомная масса
(молярная масса)208,98037 а. е. м. (г/моль) Радиус атома 170 пм Энергия ионизации
(первый электрон)702,9 (7,29) кДж/моль (эВ) Электронная конфигурация [Xe] 4f14 5d10 6s2 6p3 Химические свойства Ковалентный радиус 146 пм Радиус иона (+5e) 74 (+3e) 96 пм Электроотрицательность
(по Полингу)2,02 Электродный потенциал Bi←Bi3+ 0,23 В Степени окисления 5, 3 Термодинамические свойства простого вещества Плотность 9,747 г/см³ Удельная теплоёмкость 0,124 Дж/(K·моль) Теплопроводность 7,9 Вт/(м·K) Температура плавления 544,5 K Теплота плавления 11,00 кДж/моль Температура кипения 1883 K Теплота испарения 172,0 кДж/моль Молярный объём 21,3 см³/моль Кристаллическая решётка простого вещества Структура решётки ромбоэдрическая Период решётки 4,750 Å Отношение c/a n/a Температура Дебая 120,00 K Bi 83 208,98038 6s²6p³ Висмут Происхождение названия
Предположительно латинское Bismuthum или bisemutum происходит от немецкого weisse Masse, белая масса.
Нахождение в природе
Содержание Висмута в земной коре 2 * 10 − 5
В рудах находится как в форме собственных минералов, так и в виде примеси в некоторых сульфидах и сульфосолях других металлов. В мировой практике около 90% всего добываемого висмута извлекается попутно при металлургической переработке свинцово-цинковых, медных, оловянных руд и концентратов, содержащих сотые и иногда десятые доли процента висмута.
Висмутовые руды, содержащих 1% и выше висмута, встречаются редко. Минералами висмута, входящими в состав таких руд, являются висмут самородный (содержит 98,5—99% Bi), висмутин — Bi2S3 (81,30% Bi), тетрадимит — Bi2Te2S (56,3—59,3% Bi), козалит — Pb2Bi2S5 (42% Bi), бисмит — Вi2O3 (89,7% Bi), бисмутит — Bi2CO3(OH)4 (88,5—91,5% Bi).
Получение
Висмут получают сплавлением сульфида с железом:
Bi2S3 + 3Fe = 2Bi + 3FeS,
или последовательным проведением процессов:
2Bi2S3 + 9O2 = 2Bi2O3 + 6SO2↑;
Bi2O3 + 3C = 2Bi + 3CO↑.
Физические и химические свойства
Мировая добыча и потребление висмута
Висмут в достаточной степени редкий металл, и его мировая добыча/потребление едва превышает 6000 тонн в год (от 5800 до 6400 тонн в год).
Цены
Цены на висмут чистотой 99% в 2007 году составили в среднем 30-33 долл/кг.
Применение
Металлургия
Висмут имеет большое значение для производства так называемых «автоматных сталей», особенно нержавеющих и очень облегчает их обработку резанием на станках-автоматах (токарных, фрезерных и др.) при концентрации висмута всего 0,003 %, в то же время не увеличивая склонность к коррозии. Висмут используют в сплавах на основе алюминия (примерно 0,01 %), эта добавка улучшает пластические свойства металла, резко упрощает его обработку.
Катализаторы
В производстве полимеров трёхокись висмута служит катализатором, и её применяют, в частности, при получении акриловых полимеров. При крекинге нефти некоторое применение находит оксохлорид висмута.
Термоэлектрические материалы
Одним из важнейших направлений применения висмута является производство полупроводниковых материалов и в частности теллуридов (термо-э.д.с. теллурида висмута 280 мкВ/К) и селенидов висмута. Получен высокоэффективный материал на основе висмут-цезий-теллур для производства полупроводниковых холодильников суперпроцессоров.
Детекторы ядерных излучений
Некоторое значение для производства детекторов ядерного излучения имеет монокристаллический иодид висмута. Германат висмута (Bi4Ge3O12, краткое обозначение BGO) — сцинтилляционный материал, применяется в ядерной физике, физике высоких энергий, компьютерной томографии, геологии.
Легкоплавкие сплавы
Сплавы висмута с кадмием, оловом, свинцом, индием, таллием, ртутью, цинком и галлием, обладают очень низкой температурой плавления и применяются в качестве теплоносителей и припоев, а так же в медицине в качестве фиксирующих составов для сломанных конечностей. Некоторые легкоплавкие сплавы применяются в качестве элементов противопожарной сигнализации, в качестве специальных смазок работающих в вакууме и тяжелых условиях, в качестве клапанов (при расплавлении открывающих просвет для протекания жидкостей и газов (например ракетных топлив), в качестве предохранителей в мощных электрических цепях, в качестве уплотнительных прокладок в сверхвысоковакуумных системах, как термометрические материалы, как материалы для изготовления выплавляемых моделей в литье и т. д.
Измерение магнитных полей
Металлический висмут особой чистоты служит материалом для производства обмотки для измерения сверхсильных магнитных полей, ввиду того, что при увеличении магнитного поля электросопротивление висмута резко возрастает, и в то же время достаточно равномерно для того, чтобы по изменению сопротивления обмотки, изготовленной из него, судить о напряженности внешнего магнитного поля.
Производство полония-210
Некоторое значение висмут имеет в ядерной технологии при получении полония — важного элемента радиоизотопной промышленности.
Химические источники тока
Издавна оксид висмута в смеси с графитом используется в качестве положительного электрода в висмутисто-магниевых элементах (ЭДС 1,97—2,1 В, 120 Вт·ч/кг, 250—290 Вт·ч/дм³). Также в качестве положительного электрода в литиевых элементах находит применение висмутат свинца. Висмут в сплаве с индием находит применение в чрезвычайно стабильных и надежных ртутно-висмуто-индиевых элементах. Такие элементы прекрасно работают в космосе и в тех условиях, где важна стабильность напряжения, высокая удельная энергия, а снижение частоты отказов играет первостепенную роль (например, военные применения). Трёхфтористый висмут применяется для производства чрезвычайно энергоёмких (3000 Вт·ч/дм³, практически достигнутое — 1500—2300 Вт·ч/дм³) лантан-фторидных аккумуляторов.
Обработка прочных металлов и сплавов
В сплавах висмута (например, сплав Вуда, сплав Розе и др.) производят токарную, фрезерную обработку и сверление урана, вольфрама и его сплавов и других материалов, трудно поддающихся обработке резанием.
Ядерная энергетика
Малое сечение захвата висмутом тепловых нейтронов и значительная способность к растворению урана вкупе со значительной температурой кипения и невысокой агрессивностью к конструкционным материалам позволяют использовать висмут в гомогенных атомных реакторах.
Магнитные материалы
Интерметаллид марганец-висмут сильно ферромагнитен и производится в больших количествах промышленностью для получения пластичных магнитов. Особенностью и преимуществом такого материала является возможность быстрого и дешёвого получения постоянных магнитов (к тому же не проводящих ток) любой формы и размеров. Кроме того этот магнитный материал достаточно долговечен и обладает значительной коэрцитивной силой. Кроме соединений висмута с марганцем, также известны магнитотвёрдые соединения висмута с индием, хромом и европием, применение которых ограничено специальными областями техники вследствие либо трудностей синтеза (висмут-хром), либо высокой цены второго компонента(индий, европий).
Топливные элементы
Керамические фазы ВИМЕВОКС, включающие в свой состав оксид висмута с оксидами других металлов (ванадий, медь, никель, молибден и др.), обладают очень высокой проводимостью при температурах 500—700 К и применяются для производства высокотемпературных топливных элементов.
Высокотемпературная сверхпроводимость
Керамики, включающие в свой состав оксиды висмута, кальция, стронция, бария, меди, иттрия и др. являются высокотемпературными сверхпроводниками. В последние годы при изучении этих сверхпроводников выявлены фазы, имеющие пики перехода в сверхпроводящее состояние при 155 К, 175 К, и даже 234 К.
Производство тетрафторгидразина
Висмут в виде мелкой стружки или порошка применяется в качестве катализатора для производства тетрафторгидразина из трехфтористого азота, используемого в качестве мощнейшего окислителя ракетного горючего.
Электроника
Сплав состава 88 % Bi и 12 % Sb в магнитном поле обнаруживает аномальный эффект магнитосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.
Вольфрамат, станнат-ванадат, силикат и ниобат висмута входят в состав высокотемпературных сегнетоэлектрических материалов. Феррит висмута применяется в качестве магнитоэлектрического материала.
Медицина
Из соединений висмута в медицинском направлении шире всего используют его трехокись Bi2O3. В частности, её применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств.
Оксохлорид висмута находит применение в медицине в качестве рентгеноконтрастного средства и в качестве наполнителя при изготовлении кровеносных сосудов. Кроме того в медицине находят широкое применение такие соединения висмута как: галлат, тартрат, карбонат, субсалицилат, субцитрат, трибромфенолят висмута. На основе этих соединений разработано множество медицинских препаратов.
В качестве противоязвенных средств используются: висмута трикалия дицитрат (висмута субцитрат) (код АТХ A02BX05), висмута субнитрат (A02BX12), ранитидина висмута цитрат (A02BA07).
Пигменты
Ванадат висмута применяется в качестве пигмента.
Косметика
В производстве лака для ногтей, губной помады, теней и др, оксохлорид применяется как блескообразователь.
Биологическая роль
Изотопы
Природный висмут состоит из одного изотопа 209Bi, который считался самым тяжёлым из существующих в природе стабильных изотопов. Однако в 2003 было экспериментально доказано, что он является альфа-радиоактивным с периодом полураспада 1,9±0,2×1019 лет.
Кроме 209Bi, известны ещё более трех десятков (пока 34) изотопов и ещё больше изомеров. Среди них есть три долгоживущих:
- 207Bi 31,55 год
- 208Bi 0,368×106 лет
- 210mBi 3,04×106 лет
Все остальные радиоактивны и короткоживущи: периоды их полураспада не превышают нескольких суток.
Тринадцать изотопов висмута с массовыми числами от 197 до 208 и самый тяжелый 215Bi получены искусственным путём, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.
Ссылки
Wikimedia Foundation. 2010.