- Конечно аддитивная мера
-
Ме́ра — общее название различных типов обобщений понятий евклидовой длины, площади и n-мерного объёма для более общих пространств. Если обратное не указано явно, то обычно подразумевается счётно-аддитивная мера.
Содержание
Определения
Конечно-аддитивная мера
Пусть задано пространство X с выделенным классом подмножеств
, замкнутым относительно конечных пересечений и объединений.
Функция
называется конечно-аддитивной мерой (иногда объёмом), если она удовлетворяет следующим аксиомам:
.
- Если
— конечное семейство попарно непересекающихся множеств из
, то есть
, то
Альтернативное определение
Система множеств σ называется полукольцом, если она содержит пустое множество, замкнута по отношению к образованию пересечений и обладает тем свойством, что из принадлежности к σ множества A и
вытекает возможность представления множества A в виде объединения
, где Ak — попарно непересекающиеся множества из σ, первое из которых есть заданное множество A1.
Функция множества μ(A) называется мерой, если:
- область определения σμ функции μ(A) есть полукольцо множеств;
- значения
;
- μ(A) — аддитивна, то есть для любого конечного разложения
,
будет выполнено
.
Счётно-аддитивная мера
Пусть задано пространство X с выделенной σ-алгеброй
.
Функция
называется счётно-аддитивной (или σ-аддитивной) мерой, если она удовлетворяет следующим аксиомам:
- (σ-аддитивность) Если
— счётное семейство попарно непересекающихся множеств из
, то есть
, то
.
Замечания
- Очевидно, любая счётно-аддитивная мера является конечно-аддитивной, но не наоборот.
- Если мера всего пространства конечна, то есть
, то такая мера сама по себе называется конечной. В противном случае мера бесконечна.
- На прямой и двумерной плоскости существует бесконечное число расширений лебеговой меры с σ-алгебры, порождаемой открытыми множествами, на множество всех подмножеств, сохраняющее конечную аддитивность меры. Ни для одного из нетривиальных евклидовых пространств не существует какого-либо счётно-аддитивного расширения лебеговой меры на множество всех его подмножеств.
Связанные определения
- Тройка
называется пространством с мерой, если
есть измеримое пространство, а
— определённая на нём мера.
- Если μ является вероятностной мерой, то такое пространство с мерой называется вероятностным пространством.
Примеры
- Мера Жордана — пример конечно-аддитивной меры.
- Мера Лебега — пример бесконечной меры.
- Вероятность — пример конечной меры.
- Мера Хаусдорфа
- Мера Бореля
Вариации и обобщения
Литература
- Вулих, Б. З. Краткий курс теории функций вещественной переменной (введение в теорию интеграла). — М.: Наука, 1973. — 352 с.
Wikimedia Foundation. 2010.