- Число Рейнольдса
-
Число, или, правильнее, критерий Рейно́льдса (
), — безразмерная величина, характеризующая отношение нелинейного и диссипативного членов в уравнении Навье — Стокса[1]. Число Рейнольдса также считается критерием подобия течения вязкой жидкости.Число Рейнольдса определяется следующим соотношением:
где
— плотность среды, кг/м3;
— характерная скорость, м/с;
— характерный размер, м;
— динамическая вязкость среды, Н·с/м2;
— кинематическая вязкость среды, м2/с(
) ;
— объёмная скорость потока;
— площадь сечения трубы.
Для каждого вида течения существует критическое число Рейнольдса,
, которое, как принято считать, определяет переход от ламинарного течения к турбулентному. При
течение происходит в ламинарном режиме, при
возможно возникновение турбулентности. Критическое значение числа Рейнольдса зависит от конкретного вида течения (течение в круглой трубе, обтекание шара и т. п.), различными возмущениями потока, как-то изменение направленности и модуля вектора скорости потока, шероховатость стенок, близость местных сопротивлений и др. Например, для течения (точнее, для стабилизированного изотермического потока) жидкости в прямой круглой трубе с очень гладкими стенками
. Для движения плёнки жидкости с относительно гладкой поверхностью раздела с газом при двухфазном потоке
.Значения Re выше критического и до определённого предела относятся к переходному (смешанному) режиму течения жидкости, когда турбулентное течение более вероятно, но ламинарное иногда тоже наблюдается — то есть, неустойчивая турбулентность. Числу Reкр 2300 соответствует интервал 2300-10 000; для упомянутого примера с тонкими плёнками это 20-120 — 1600.
Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно. Например, в водохранилищах формально вычисленные значения числа Рейнольдса очень велики, хотя там наблюдается ламинарное течение. Напротив, возмущения потока могут значительно снижать величину
.Стоит отметить, что для газов Reкр достигается при значительно бо́льших скоростях, чем у жидкостей, поскольку у первых куда больше кинематическая вязкость (в 10-15 раз).
Критерий назван в честь выдающегося английского физика О. Рейнольдса (1842—1912), автора многочисленных пионерских работ по гидродинамике.
Содержание
Акустическое число Рейнольдса
В акустике пользуются числом Рейнольдса для количественной характеристики соотношения нелинейных и диссипативных членов в уравнении, описывающем распространение волны конечной амплитуды. В этом случае число Рейнольдса принимает следующий вид:
где
— плотность среды, кг/м3;
— характерный масштаб колебательной скорости;
— круговая частота;
— скорость звука в среде;
— параметр диссипации.
Физический смысл
Число Рейнольдса есть отношение сил инерции, действующих в потоке, к силам вязкости. Плотность в числителе выражения
характеризует инерцию частиц, отклонившихся от движения по прямой, а вязкость в знаменателе показывает склонность жидкости препятствовать такому отклонению.Также число Рейнольдса можно рассматривать как отношение кинетической энергии жидкости к потерям энергии на характерной длине (ввиду внутреннего трения).
Ссылки
- ↑ гл. ред. Голямина, Ультразвук, Советская энциклопедия, М., 1979, стр. 303
Примечания
Литература
Касаткин, А. Г. Основные процессы и аппараты химической технологии. Изд. 8-е. Химия: Москва, 1971; с. 42 –43; 118.
Безразмерные величины в физике Понятия Размерность физической величины · Безразмерная величина · π-Теорема · Критерий подобия Числа Аббе · Альфвена · Архимеда · Атвуда · Багнольда · Био · Бонда · Бринкмана · Булыгина · Вебера · Вайсенберга · Галилея · Гартмана · Гей-Люссака · Грасгофа · Гретца · Гуше · Дамкёлера · Деборы · Дерягина · Дина · капиллярности · Кармана · Каулинга · Кирпичёва · Клаузиуса · Кнудсена · Коссовича · Коши · Лапласа · Лундквиста · Лыкова · Льюиса · Лященко · Маха · Марангони · Мортона · Нуссельта · Ньютона · Онезорге · Пекле · Поснова · Прандтля (магнитное, турбулентное) · Пуазёйля · Рейнольдса (магнитное) · Ричардсона · Россби · Роуза · Рошко · Руарка · Рэлея · Соре · Стэнтона · Стокса · Струхаля · Стюарта · Суратмана · Тейлора · Уомерсли · Фёдорова (в гидродинамике · в теории сушки) · Фруда · Фурье · Хагена · Чандрасекара · Шмидта · Шервуда · Эйлера · Эккерта · Экмана · Элсассера · Этвёша 
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 мая 2011.Категории:- Критерии подобия
- Гидродинамика
Wikimedia Foundation. 2010.

