Риманово многообразие

Риманово многообразие

Риманово многообразие или риманово пространство (M,g) это вещественное дифференцируемое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом. Метрика g есть положительно определённый симметрический тензор — метрический тензор. Другими словами, риманово многообразие это дифференцируемое многообразие, в котором касательное пространство в каждой точке является конечномерным Евклидовым пространством.

Это позволяет определить различные геометрические понятия на Римановых многообразиях, такие как углы, длины кривых, площади (или объёмы), кривизну, градиенты функций и дивергенции векторных полей.

Не стоит путать римановы многообразия с римановыми поверхностями — многообразиями, которые локально выглядят как склейки комплексных плоскостей.

Термин назван в честь немецкого математика Бернхарда Римана.

Обзор

Касательное расслоение гладкого многообразия M ставит в соответствие каждой точке M векторное пространство называемое касательным, и на этом касательном пространстве можно ввести скалярное произведение. Если такой набор введённых скалярных произведений на касательном расслоении многообразия изменяется гладко от точки к точке, то с помощью таких произведений можно ввести метричность на всём многообразии. К примеру, гладкая кривая α(t): [0, 1] → M имеет касательный вектор α′(t0) в касательном пространстве TM(t0) в любой точке t0 ∈ (0, 1), и каждый такой вектор имеет длину ‖α′(t0)‖, где ‖·‖ обозначает норму индуцированную скалярным произведением на TM(t0). Интеграл по этим длинам даёт длину всей кривой α:

L(\alpha) = \int_0^1{\|\alpha'(t)\|\, \mathrm{d}t}.

Гладкость α(t) для t в [0, 1] гарантирует, что интеграл L(α) существует и длина кривой определенна.

Во многих случаях, для того чтобы перейти от линейно-алгебраической концепции к дифференциально геометрической, гладкость очень важна.

Каждое гладкое подмногообразие Rn имеет индуцированную метрику g: скалярное произведение на каждом касательном пространстве это просто скалярное произведение на Rn. В действительности имеет место теорема Нэша о регулярных вложениях, все римановы многообразия могут быть реализованы таким способом.

Измерение длин и углов при помощи метрики

На Римановом многообразии, длина сегмента кривой, заданной параметрически (как вектор-функция x(t) параметра t, меняющегося от a до b), равна:

L = \int\limits_a^b \sqrt{ g_{ij}{dx^i\over dt}{dx^j\over dt}}\,dt 
= \int\limits_{x(a)}^{x(b)} \sqrt{ g_{ij}\,dx^i\,dx^j}.

Угол  \theta  \ между двумя векторами, U=u^i{\partial\over \partial x^i} \ и V=v^j{\partial\over \partial x^j} \ (в искривленном пространстве векторы существуют в касательном пространстве в точке многообразия), определяется выражением:

\cos \theta = \frac{g_{ij}u^iv^j}{\sqrt{ \left| g_{ij}u^iu^j \right| \left| g_{ij}v^iv^j \right|}}.

Для псевдоримановой метрики, длина по формуле, которая приведена выше, не всегда определена, потому что выражение под корнем может быть отрицательным. В общем можно определить длину кривой только если знак выражения под корнем либо положительный, либо отрицательный по всей длине кривой. Для псевдоримановой метрики:

L = \int\limits_a^b \sqrt{ \left|g_{ij}{dx^i\over dt}{dx^j\over dt}\right|}\,dt.

Заметим, что хотя эти формулы используют координатное представление, результат не зависит от выбора системы координат; он зависит только от метрики и от кривой, вдоль которой происходит интегрирование.



Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Риманово многообразие" в других словарях:

  • РИМАНОВО МНОГООБРАЗИЕ — дифференцируемое многообразие, наделенное римановой метрикой. По существу Р. м. то же, что и риманоео пространство. М. И. Войцеховский …   Математическая энциклопедия

  • Неприводимое риманово многообразие — риманово многообразие , у которого группа голономии неприводима, т. е. не имеет нетривиальных инвариантных подпространств. Риманово пространство с приводимой группой голономии называется приводимым. Свойства теорема де Рама: Полное односвязное… …   Википедия

  • РИМАНОВО ПРОСТРАНСТВО ОДНОРОДНОЕ — риманово пространство ( М,g) вместе с транзитивной эффективной группой Gего движений. Пусть K стационарная подгруппа фиксированной точки Тогда многообразие Мотождествляется с факторпространством G/K с помощью биекции , а риманова метрика g… …   Математическая энциклопедия

  • МНОГООБРАЗИЕ — множество, точки к рого задаются набором чисел (координат), причём при переходе от точки к точке координаты меняются непрерывно. Локально, т. е. в нек рой окрестности каждой точки, M. устроено так же, как евклидово пространство . (элементы к рого …   Физическая энциклопедия

  • ГЛОБАЛЬНО СИММЕТРИЧЕСКОЕ РИМАНОВО ПРОСТРАНСТВО — риманово многообразие М, каждая точка рк рого является изолированной неподвижной точкой нек рой ннволютивной нзометрии Sp многообразия М, т. е. есть тождественное преобразование. Пусть G компонента единицы группы изометрий пространства Ми К… …   Математическая энциклопедия

  • РИМАНОВО ПРОСТРАНСТВО ОБОБЩЕННОЕ — пространство с внутренней метрикой, подчиненное нек рым ограничениям на кривизну. К ним относятся пространства с кривизной, ограниченной сверху , и др. (см. [3]). Р. п. о. отличаются от римановых пространств не только большей общностью, но и тем …   Математическая энциклопедия

  • Многообразие —         математическое понятие, уточняющее и обобщающее на любое число измерений понятия линии и поверхности, не содержащих особых точек (т. e. линии без точек самопересечения, концевых точек и т. п. и поверхности без самопересечений, краев и т.… …   Большая советская энциклопедия

  • ДВУМЕРНОЕ МНОГООБРАЗИЕ ОГРАНИЧЕННОЙ КРИВИЗНЫ — метрическое пространство, являющееся двумерным многообразием с внутренней метрикой, для к рого определены аналоги таких понятий двумерной римановой геометрии, как длина и интегральная кривизна кривой, площадь и интегральная гауссова кривизна… …   Математическая энциклопедия

  • ИЗОМЕТРИЧЕСКОЕ ПОГРУЖЕНИЕ — погружение k мерного метрич. многообразия М к в n мерное риманово пространство V, в виде k мерной поверхности Ф, при к ром расстояние между любыми двумя точками на М k совпадает с расстоянием между их образами, измеренным по поверхности Ф в… …   Математическая энциклопедия

  • КВАТЕРНИОННАЯ СТРУКТУРА — 1) К. с. на вещественном векторном пространстве V структура модуля над телом кватернионов К, т. е. подалгебра H алгебры End Vэндоморфизмов пространства V, порожденная двумя антикоммутирующими комплексными структурами J1, J2 на пространстве V.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»