- Градиент
-
Эта статья о математической характеристике; о способе заливки см.: Градиент (компьютерная графика).
Градие́нт (от лат. gradiens, род. падеж gradientis — шагающий, растущий) — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины
, значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный быстроте роста этой величины в этом направлении.
Например, если взять в качестве
высоту поверхности Земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма», и своей величиной характеризовать крутизну склона.
С математической точки зрения градиент — это производная скалярной функции, определенной на векторном пространстве.
Пространство, на котором определена функция и её градиент, может быть, вообще говоря, как обычным трёхмерным пространством, так и пространством любой другой размерности любой физической природы или чисто абстрактным.
Термин впервые появился в метеорологии, а в математику был введён Максвеллом в 1873 г. Обозначение grad тоже предложил Максвелл.
Стандартные обозначения:
или, с использованием оператора набла,
— вместо
может быть любое скалярное поле, обозначенное любой буквой, например
— обозначения градиента поля V.
Содержание
Определение
Для случая трёхмерного пространства градиентом скалярной функции
координат
,
,
называется векторная функция с компонентами
,
,
.
Или, использовав для единичных векторов по осям прямоугольных декартовых координат
:
Если
— функция
переменных
, то её градиентом называется
-мерный вектор
компоненты которого равны частным производным
по всем её аргументам.
- Размерность вектора градиента определяется, таким образом, размерностью пространства (или многообразия), на котором задано скалярное поле, о градиенте которого идет речь.
- Оператором градиента (обозначаемым обычно, как говорилось выше,
или
) называется оператор, действие которого на скалярную функцию (поле) дает ее градиент. Этот оператор иногда коротко называют просто "градиентом".
Смысл градиента любой скалярной функциив том, что его скалярное произведение с бесконечно малым вектором перемещения
дает полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена
, то есть линейную (в случае общего положения она же главная) часть изменения
при смещении на
. Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:
Стоит здесь заметить, что поскольку формула полного дифференциала не зависит от вида координат
, то есть от природы параметров x вообще, то полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку
— это вектор, то градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе. Таким образом, выражение (вообще говоря — для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:
или, опуская по правилу Эйнштейна знак суммы,
(в ортонормированном базисе мы можем писать все индексы нижними, как мы и делали выше). Однако градиент оказывается настоящим ковариантным вектором в любых криволинейных координатах.
Пример
Например, градиент функции
будет представлять собой:
В физике
В различных отраслях физики используется понятие градиента различных физических полей.
Например, напряженность электростатического поля есть минус градиент электрического потенциала, напряженность гравитационного поля (ускорение свободного падения) в классической теории гравитации есть минус градиент гравитационного потенциала. Сила в классической механике есть минус градиент потенциальной энергии.
В естественных науках
Понятие градиента находит применение не только в физике, но и в смежных и даже сравнительно далеких от физики науках (иногда это применение носит количественный, а иногда и просто качественный характер).
Например, градиент концентрации — нарастание или уменьшение по какому-либо направлению концентрации растворённого вещества, градиент температуры — увеличение или уменьшение по какому-то направлению температуры среды и т. д.
Градиент таких величин может быть вызван различными причинами, например, механическим препятствием, действием электромагнитных, гравитационных или других полей или различием в растворяющей способности граничащих фаз.
Геометрический смысл
Рассмотрим семейство линий уровня функции
:
Нетрудно показать, что градиент функции
в точке
перпендикулярен её линии уровня, проходящей через эту точку. Модуль градиента показывает максимальную скорость изменения функции в окрестности
, то есть частоту линий уровня. Например, линии уровня высоты изображаются на топографических картах, при этом модуль градиента показывает крутизну спуска или подъема в данной точке.
Связь с производной по направлению
Используя правило дифференцирования сложной функции, нетрудно показать, что производная функции
по направлению
равняется скалярному произведению градиента
на единичный вектор
:
Таким образом, для вычисления производной по любому направлению достаточно знать градиент функции, то есть вектор, компоненты которого являются её частными производными.
Градиент в ортогональных криволинейных координатах
где
— коэффициенты Ламе.
Полярные координаты (на плоскости)
Коэффициенты Ламе:
Отсюда:
Цилиндрические координаты
Коэффициенты Ламе:
Отсюда:
Сферические координаты
Коэффициенты Ламе:
.
Отсюда:
См. также
- Векторный анализ
- Теорема Остроградского — Гаусса
- Формулы векторного анализа
- Оператор набла
- Теория поля
- Градиент концентрации
- 4-градиент
- Оператор Canny
Литература
1. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Учебное пособие для физико-математических специальностей университетов, 1986. стр.30
Для улучшения этой статьи по математике желательно?: - Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
Категории:- Векторы
- Векторный анализ
- Математическая физика
Wikimedia Foundation. 2010.