Предкомпакт

Предкомпакт

Компа́ктное простра́нство — это топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие.

В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.

Содержание

Связанные определения

  • Подмножество топологического пространства, являющееся в индуцированной топологии компактным пространством, называется компактным множеством.
  • Множество называется относительно компактным или предкомпактным, если его замыкание компактно.
  • Пространство называется секвенциально компактным, если из любой последовательности в нём можно выделить сходящуюся подпоследовательность.
  • Локально компактное пространство — топологическое пространство, в котором любая точка имеет окрестность, замыкание которой компактно.
  • Ограниченно компактное пространствометрическое пространство, в котором все замкнутые шары компактны.
  • Термин компакт иногда используется для метризуемого компактного пространства, но иногда просто как синоним к термину «компактное пространство».

Свойства

Примеры компактных множеств

  • замкнутые и ограниченные множества в \mathbb{R}^n
  • конечные подмножества в пространствах, удовлетворяющих аксиоме отделимости \mathbf{T}_1
  • теорема Асколи — Арцела даёт характеризацию компактных множеств для некоторых функциональных пространств. Рассмотрим пространство C(X) вещественных функций на метрическом компактном пространстве X с нормой \|f\|=\sup_x |f(x)|. Тогда замыкание множества функций F в C(X) компактно тогда и только тогда, когда F равномерно ограничено и равностепенно непрерывно.
  • пространство Стоуна булевых алгебр
  • компактификация топологического пространства

История

Бикомпактное пространство — термин, введённый П. С. Александровым как усиление введённого М. Фреше понятия компактного пространства: топологическое пространство компактно — в первоначальном смысле слова — если в каждом счётном открытом покрытии этого пространства содержится его конечное подпокрытие. Однако дальнейшее развитие математики показало, что понятие бикомпактности настолько важнее первоначального понятия компактности, что в настоящее время под компактностью понимают именно бикомпактность, а компактные в старом смысле пространства называют счётно-компактными. Оба понятия равносильны в применении к метрическим пространствам.

Литература


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Предкомпакт" в других словарях:

  • Теорема Арцела — Рассмотрим M подмножество класса функций, непрерывных на отрезке [a, b]. Тогда то, что M предкомпакт, равносильно тому, что M ограниченно и равностепенно непрерывно. Доказательство => Пусть M предкомпакт …   Википедия

  • ТОПОЛОГИЧЕСКОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО — над топологическим полем (т. п.), К векторное пространство Енад К, наделенное топологией, согласующейся со структурой векторного пространства, т. е. удовлетворяющей следующим аксиомам: 1) отображение непрерывно; 2) отображение непрерывно (при… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»