- Звездчатый многогранник
-
Звёздчатый многогранник — это правильный невыпуклый многогранник. Многогранники из-за их необычных свойств симметрии исследуются с древнейших времён. Также формы многогранников широко используются в декоративном искусстве.
Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки — это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок. Есть много видов звёздчатых многогранников. Наиболее известные это:
Содержание
Звёздчатый октаэдр
Он был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт Иоганном Кеплером, и назван им Stella octangula — звезда восьмиугольная. Отсюда октаэдр имеет и второе название «stella octangula Кеплера».
Существует только одна форма звёздчатого октаэдра. Её можно рассматривать как соединение двух тетраэдров.
Додекаэдр
Большой звёздчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра — пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.
Большой звёздчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.
Икосаэдр
Икосаэдр имеет двадцать граней. Если каждую из них продолжить неограниченно, то тело будет окружено великим многообразием отсеков — частей пространства, ограниченных плоскостями граней. Все звездчатые формы икосаэдра можно получить добавлением к исходному телу таких отсеков. Не считая самого икосаэдра, продолжения его граней отделяют от пространства 20+30+60+20+60+120+ 12+30+60+60 отсеков десяти различных форм и размеров. Большой икосаэдр (см. рис) состоит из всех этих кусков, за исключением последних шестидесяти.
Икосододекаэдр
Икосододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильные треугольники. Казалось бы, столь большое число граней потребует сложнейших исследований. Что касается вопроса о том, могут ли получившиеся многогранники оказаться правильными, то на него давно получен ответ. Великий математик Коши ещё в 1811 году доказал, что список правильных многогранников исчерпывается пятью платоновыми телами вкупе с четырьмя многогранниками Кеплера — Пуансо.
См. также
Многогранники Правильные
(Платоновы
тела)Трёхмерные (Тетраэдр • Куб • Октаэдр • Додекаэдр • Икосаэдр)
Четырёхмерные (6 правильных многогранников)
Большей размерности
(только 3 типа правильных многогранников: n-мерный симплекс, n-мерный октаэдр, n-мерный куб)Правильные
невыпуклыеЗвёздчатый многогранник
(Звёздчатый октаэдр, Звёздчатый додекаэдр, Звёздчатый икосаэдр, Звёздчатый икосододекаэдр)Выпуклые Полуправильные многогранники или Архимедовы тела/двойственные многогранники или Каталановы тела
(Кубооктаэдр/Ромбододекаэдр, Икосододекаэдр/Ромботриаконтаэдр, Усечённый тетраэдр/Triakis tetrahedron,
Усечённый куб/Triakis octahedron, Усечённый октаэдр/Tetrakis hexahedron, Усечённый додекаэдр/Triakis icosahedron,
Усечённый икосаэдр/Pentakis dodecahedron, Ромбокубоктаэдр/Дельтоидальный икоситетраэдр,
Ромбоусечённый кубоктаэдр/Disdyakis dodecahedron, Ромбоикосододекаэдр/Дельтоидальный гексеконтаэдр,
Ромбоусечённый икосододекаэдр/Disdyakis triacontahedron,
Курносый куб/Пентагональный икоситетраэдр, Курносый додекаэдр/Пентагональный гексеконтаэдр,
Звёздчатый кубооктаэдр, правильные призма и антипризма)Формулы,
теоремы,
теорииПрочее Группа многогранника • Двенадцатигранники (додекаэдр, пентагондодекаэдр, ромбододекаэдр) • Бипирамида •
Зоноэдр • Параллелепипед • Параллелоэдр • Пентагондодекаэдр • Пентеракт • Призматоид • Ромбоэдр • Тессеракт
Wikimedia Foundation. 2010.