- Дельта-функция
-
Де́льта-фу́нкция (или δ-функция, δ-функция Дирака, дираковская дельта, единичная импульсная функция) — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин (масса, заряд, интенсивность источника тепла, сила и т. п.), сосредоточенной или приложенной в одной точке.
Например, плотность единичной точечной массы m, находящейся в точке a для примера, одномерного евклидова пространства записывается с помощью -функции в виде Дельта-функция также применима для описания распределений заряда, массы и т. п. на поверхностях или линиях.
-Функция не является функцией в классическом смысле, а определяется как обобщённая функция: непрерывный линейный функционал на пространстве дифференцируемых функций. Можно ввести производную для δ-функции, которая тоже будет обобщённой функцией и интеграл, опеределяемый как функция Хевисайда. Нетрудно указать последовательности обычных классических функций, слабо сходящиеся к -функции.
Можно различать одномерную и многомерные дельта-функции, однако последние могут быть представлены в виде произведения одномерных функций в количестве, равном размерности пространства, на котором определена многомерная функция.
Введена английским физиком Полем Дираком.
Содержание
Определения
Существуют различные взгляды на понятие дельта-функции. Получающиеся при этом объекты, вообще говоря, различны, однако обладают рядом общих характерных свойств. Все указанные ниже конструкции естественно обобщаются на случаи пространств большей размерности .
Интуитивное определение
Дельта-функцию (функция Дирака) одной вещественной переменной можно представлять себе как «функцию» , для которой выполняются следующие равенства:
То есть эта функция не равна нулю только в точке x=0, где она обращается в бесконечность таким образом, чтобы её интеграл по любой окрестности x=0 был равен 1. В этом смысле понятие дельта-функции аналогично физическим понятиям точечной массы или точечного заряда. Аналогичные условия верны и для дельта-функций, определённых на
Эти равенства не принято считать определением дельта-функции, однако во многих учебниках по физике она определяется именно так, и этого достаточно для решения физических задач. Отметим, что помимо этого неявно предполагается равенство
(фильтрующее свойство) для любой функции f. Оно не следует даже формально из указанного выше тождества, так как, вообще говоря, значение этого интеграла также могло бы включать в себя производные от f. Именно это происходит с производными от дельта-функции, которые также почти всюду равны 0 и обращаются в бесконечность при x=0.
Классическое определение
Дельта-функция определяется как линейный непрерывный функционал на некотором функциональном пространстве (пространстве основных функций). В зависимости от цели и желаемых свойств, это может быть пространство функций с компактным носителем, пространство функций, быстро убывающих на бесконечности, гладких функций на многообразии, аналитических функций и т. д. Для того, чтобы были определены производные дельта-функции с хорошими свойствами, во всех случаях основные функции берутся бесконечно дифференцируемыми, пространство основных функций также должно быть полным метрическим пространством. Общий подход к обобщённым функциям см. в соответствующей статье. Такие обобщённые функции также называют распределениями.
Мы рассмотрим самый простой вариант. В качестве пространства основных функций рассмотрим пространство всех бесконечно дифференцируемых функций на отрезке. Последовательность сходится к , если на любом компакте функции сходятся к равномерно вместе со всеми своими производными:
Это локально выпуклое метризуемое пространство. Дельта-функцию определим как функционал , такой что
Непрерывность означает, что если , то . Здесь — значение функционала на функции . Для удобства это записывают как
Заметим, что при таком подходе интегральная запись есть не больше, чем формальное обозначение, облегчающее восприятие формул.
Дельта-функция по Коломбо
Используемому для работы с дельта-функцией интегральному выражению можно придать смысл, близкий к интуитивному, в рамках теории алгебры обобщённых функций Коломбо[1].
Пусть — множество бесконечно дифференцируемых функций с компактным носителем, то есть не равных нулю лишь на ограниченном множестве. Рассмотрим множество функций
Обобщённая функция — это класс эквивалентности функций бесконечно дифференцируемых по x при каждом и удовлетворяющих некоторому условию умеренности (полагая и все её производные по x достаточно медленно растут при ). Две функции полагаются эквивалентными, если , где — ещё один класс функций с ограничениями на рост при
Дельта-функция определяется как Преимущество подхода Коломбо в том, что его обобщённые функции образуют коммутативную ассоциативную алгебру, при этом на множество обобщённых функций естественно продолжаются понятия интегрирования, дифференцирования, пределов, даже значения в точке. В этом смысле на дельта-функцию действительно можно смотреть как на функцию, равную 0 везде, кроме точки 0, и равную бесконечности в нуле, так как теория Коломбо включает в себя теорию бесконечно больших и бесконечно малых чисел, аналогично нестандартному анализу.
Подход Егорова
Аналогичная теория обобщённых функций была изложена в работе Ю. В. Егорова[2]. Хотя она не эквивалентна теории Коломбо, конструкция значительно проще и обладает большинством желаемых свойств.
Обобщённая функция — это класс эквивалентности последовательностей Последовательности и считаются эквивалентными, если для любого компакта функции последовательностей совпадают на начиная с некоторого номера:
Всевозможные операции над последовательностями (умножение, сложение, интегрирование, дифференцирование, композиция, …) определяются покомпонентно. Например, интеграл по множеству I определяется как класс эквивалентности последовательности
Две обобщённые функции слабо равны, если для любой бесконечно гладкой функции
При этом дельта-функция определяется любой дельта-образной последовательностью (см. ниже), все такие обобщённые функции слабо равны.
Свойства
- Интеграл от дельта-функции по любому интервалу, содержащему в себе ноль, то есть интервалу вида где и — произвольные действительные положительные числа, равен 1.
- , где — простые нули функции .
- Первообразной одномерной дельта-функции является функция Хевисайда:
- Фильтрующее свойство дельта-функции:
δ-Функция как слабый предел
Пусть
Тогда последовательность
слабо сходится к -функции.
Часто в качестве выбирают
дающую последовательность
Если нужно, чтобы члены последовательности были всюду положительными функциями, можно исходить из Гауссова колокола:
Интегральное представление
Во многих приложениях оказывается удобным интегральное представление дельта-функции:
ДоказательствоРассмотрим интеграл
- (1)
который можно интерпретировать как предел
где
- (2)
Известно, что
- (3)
В силу (3) для любого справедливо равенство:
- (4)
Можно показать (см. выше), что при неограниченном росте N для функции (2) оказываются верными все свойства дельта-функции и она в некотором смысле стремится к
Производная дельта-функции
Фундаментальное выражение, описывающее производную дельта-функции :
(распространение на случай подынтегральных выражений, содержащих дельта-функцию, интегрирования по частям).
Аналогично для n-й производной дельта-функции:
А проинтегрировав так по частям n раз, получим в конце концов:
Подставив же в первую формулу и a=0, убедимся, что
Для производной дельта-функции также верны следующие тождества:
Преобразование Фурье
- В этом параграфе мы будем применять нормировку, соответствующую соглашению о единичном коэффициенте в обратном преобразовании, то есть имея в виду
- Формулы этого параграфа имеют соответствующие аналоги для многомерного преобразования Фурье.
К дельта-функции можно применить преобразование Фурье:
В результате получается, что спектр (фурье-образ) -функции является просто константой:
То есть, как и было показано выше,
Представление многомерных дельта-функций в различных системах координат
В n-мерном пространстве в декартовых координатах (ортонормированном базисе):
В двумерном пространстве:
В полярных координатах:
- — несмещённая относительно начала координат (с особенностью при r=0),
- — с особенностью в точке общего положения при r=0 доопределяется нулём.
В трехмёрном пространстве:
В цилиндрической системе координат:
- — несмещённая относительно начала координат (с особенностью при ),
- — с особенностью в точке общего положения при r=0 доопределяется нулём.
В сферической системе координат:
- — несмещённая относительно начала координат (с особенностью при r=0).
Физическая интерпретация
Вблизи заряжённой точки поле бесконечно, ряды Тейлора для поля не сходятся, поэтому вводят специальные функции. Одной из таких функций является дельта-функция. Вопрос о поле точечной заряженной частицы сравнительно сложен, поэтому рассмотрим сначала более простой пример.
Мгновенное ускорение
Пусть частица, движущаяся вдоль прямой, при ударе пренебрежимо малой длительности скачком приобретают какую-то скорость. Зададимся вопросом: как рассчитать ускорение, приобретенное телом? Построим график зависимости изменения скорости от времени. График будет иметь следующий вид:
Данный график почти всюду является графиком функции Хевисайда. Производная функции Хевисайда является единичной дельта-функцией, график которой условно можно изобразить как
Данный график отображает бесконечное ускорение при мгновенном наборе скорости. В общем случае ускорение при ударе можно записать как
Масса материальной точки
Если нужно найти суммарную массу (или заряд) некоторого непрерывного распределения плотности (или плотности заряда) содержащего, кроме того, точечные массы (заряды), то удобно вместо формулы, учитывающей отдельно дискретные массы и непрерывную конечную плотность:
записывать просто:
имея в виду, что имеет как непрерывную, так и дельтообразные (по одной для каждой точечной массы) составляющие:
Другие примеры
- Дельта-функция применяется в математической физике при решении задач, в которые входят сосредоточенные величины. В квазиклассическом пределе () квантовой механики волновые функции локализуются в волновые пакеты с дельтообразными (то есть имеющими в пределе форму дельта-функции) огибающими, и области их локализации движутся по классическим траекториям согласно уравнениям Ньютона.
- Преобразование Фурье синуса является дельта-функцией. Это позволяет более удобно и математически строго формулировать различные задачи, связанные с преобразованием Фурье, которые очень многочисленны: волновая оптика, акустика, теория колебаний. В квантовой механике преобразования Фурье волновых функций играют первостепенную принципиальную и техническую роль, именно для неё Дирак впервые ввёл дельта-функцию.
- Дельта-функции играют роль собственных функций оператора с непрерывным спектром в представлениях, где этот оператор диагонален. Таким образом, они играют роль базиса в диагональном представлении оператора.
- Важным применением дельта-функции является их участие в аппарате функций Грина линейных операторов. Для линейного оператора L, действующего на обобщённые функции над многообразием M, уравнение, определяющее функцию Грина g с источником в точке имеет вид
- Особенно часто встречается применение этого аппарата к оператору Лапласа (электростатика, теплопроводность, диффузия, механическая теория упругости) и подобным ему операторам, таким как Оператор Д’Аламбера (акустика, электродинамика, квантовая теория поля, где функция Грина часто носит специальное название пропагатора).
- Для лапласиана в функцией Грина является функция 1/r, так что
-
- где r — расстояние до начала координат. Этот факт используется для доказательства того, что выражение для скалярного потенциала
- удовлетворяет уравнению Пуассона:
Примечания
- ↑ Colombeau J. F. Elementary Introduction to New Generalized Functions. — Amsterdam: Elsevier Science Publishers B. V., 1985. — 281 с. — ISBN 978-0-444-87756-7
- ↑ Егоров Ю. В. К теории обобщенных функций // УМН. — 1990. — В. 5 (275). — Т. 45. — С. 3—40.
Литература
- Дирак П. А. М. Основы квантовой механики / Пер. с англ. — М., 1932 (есть много переизданий).
- Кудрявцев Л. Д. Краткий курс математического анализа. — Том 2. — ISBN 5-9221-0185-4.
- Weisstein, Eric W. Delta Function (англ.) на сайте Wolfram MathWorld.
- Хермандер Л. Анализ линейных дифференциальных уравнений. — Том 1.
- Хермандер Л. Линейные дифференциальные операторы в частных производных.
- Гельфанд И. М., Шилов Г. Е. Обобщённые функции и действия над ними.
- Краснопевцев Е. А. Математические методы физики. Избранные вопросы.
См. также
Категории:- Теория меры
- Функции
- Математическая физика
Wikimedia Foundation. 2010.