- E (число)
-
e (число)
Не следует путать с Числа Эйлера I рода.Список чисел — Иррациональные числа
Константа Апери — √2 — √3 — √5 — φ — e — π — δe — математическая константа, основание натурального логарифма, трансцендентное число. Иногда число e называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e». Численное значение[1]:
Число e играет важную роль в дифференциальном и интегральном исчислении, а также многих других разделах математики.
Содержание
Способы определения
Число e может быть определено несколькими способами.
- Через предел:
- Как сумма ряда:
или
.
- Как единственное число a, для которого выполняется
- Как единственное положительное число a, для которого верно
Свойства
Данное свойство играет важную роль в решении дифференциальных уравнений. Так, например, единственным решением дифференциального уравненияявляется функция
, где c — произвольная константа.
- Число e иррационально и даже трансцендентно. Это первое число, которое не было выведено как трансцендентное специально, его трансцендентность была доказана только в 1873 году Шарлем Эрмитом. Предполагается, что e — нормальное число, то есть вероятность появления разных цифр в его записи одинакова.
, см. формула Эйлера, в частности
- Ещё одна формула, связывающая числа е и π, т. н. «интеграл Пуассона» или «интеграл Гаусса»
- Для любого комплексного числа z верны следующие равенства:
- Число e разлагается в бесконечную цепную дробь следующим образом:
, то есть
- Представление Каталана:
История
Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен
.
Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).
Предполагается, что автором таблицы был английский математик Отред.
Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:
Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690—1691 годы.
Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.
Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler).
Мнемоника
- Приблизительное значение зашифровано в: «Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли» (нужно выписать подряд цифры, выражающие число букв в словах следующего стишка, и поставить запятую после первого знака)
- Запомнить как 2,7 и повторяющиеся 18, 28, 18, 28.
- Мнемоническое правило: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45, 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: «Экспоненту помнить способ есть простой: две и семь десятых, дважды Лев Толстой»
- Цифры 45, 90 и 45 можно запоминать как «год победы над фашистской Германией, затем дважды этот год и снова он»
- Правила e связывается с президентом США Эндрю Джексоном: 2 — столько раз избирался, 7 — он был седьмым президентом США, 1828 — год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем — опять-таки равнобедренный прямоугольный треугольник.
- С точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки):
.
- Запоминание e как
.
- Грубое (с точностью до 0,001), но красивое приближение полагает e равным
. Совсем грубое (с точностью 0,01) приближение даётся выражением
.
- «Правило Боинга»:
даёт неплохую точность 0,0005.
- Стишки:
- Два и семь, восемнадцать,
- Двадцать восемь, восемнадцать,
- Двадцать восемь, сорок пять,
- Девяносто, сорок пять.
Доказательство иррациональности
Предположим, что
рационально. Тогда
, где
— целое, а
— натуральное и больше 1, т.к.
— не целое. Следовательно
Умножая обе части уравнения на
, получаем
Переносим
в левую часть:
Все слагаемые правой части целые, следовательно:
— целое
Но с другой стороны
Получаем противоречие.
Интересные факты
- В IPO компании Google в 2004 году было объявлено о намерении компании увеличить свою прибыль на 2 718 281 828 долларов. Заявленное число представляет собой первые 10 цифр известной математической константы.
- В языках программирования символу e в экспоненциальной записи чисел соответствует число 10, а не Эйлерово число. Это связано с историей создания и использования языка FORTRAN для математических вычислений[2]:
Я начал программировать в 1960 году на FORTRAN II, используя компьютер IBM 1620. В то время, в 60-е и 70-е годы, FORTRAN использовал только заглавные буквы. Возможно, это произошло потому, что большинство старых устройств ввода были телетайпами, работавшими с 5-битовым кодом Бодо, который не поддерживал строчные буквы. Буква E в экспоненциальной записи тоже была заглавной и не смешивалась с основанием натурального логарифма e, которое всегда записывается маленькой буквой. Символ E просто выражал экспоненциальный характер, то есть обозначал основание системы — обычно таким было 10. В те годы программисты широко использовали восьмеричную систему. И хотя я не замечал такого, но если бы я увидел восьмеричное число в экспоненциальной форме, я бы предположил, что имеется в виду основание 8. Первый раз я встретился с использованием маленькой e в экспоненциальной записи в конце 70-х годов, и это было очень неудобно. Проблемы появились потом, когда строчные буквы по инерции перешли в FORTRAN. У нас существовали все нужные функции для действий с натуральными логарифмами, но все они записывались прописными буквами.
- Например, записи
7.38e-43
соответствует число, а не
.
См. также
Примечания
- ↑ 2 миллиона цифр после запятой
- ↑ Эккель Б. Философия Java = Thinking in Java. — 4-е изд. — СПб.: Питер, 2009. — С. 84. — (Библиотека программиста). — ISBN 978-5-388-00003-3
Ссылки
- История числа e(англ.)
- e for 2.71828…(англ.) (история и правило Джексона)
- Горобец, Борис Соломонович. Мировые константы в основных законах физики и физиологии // Наука и жизнь. — 2004. — № 2. — статья с примерами физического смысла констант π и e
Числа с собственными именами Вещественные Пи • Золотое сечение • Серебряное сечение • Число Скьюза • e (число Эйлера) Натуральные Чёртова дюжина • Число зверя • Число Рамануджана — Харди Степени десяти Мириада • Гугол • Асанкхейя • Гуголплекс Степени тысячи Тысяча • Миллион • Миллиард • Биллион • Триллион … • … Центиллион • Зиллион Степени двенадцати Дюжина • Гросс • Масса
Wikimedia Foundation. 2010.