Основной тензор

Основной тензор

Метрический тензор или метрика — это симметричный тензор ранга 2 на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д.

В частном случае поверхности, метрика также называется первой квадратичной формой.

В общей теории относительности метрика рассматривается в качестве фундаментального физического поля (гравитационного) на четырехмерном многообразии физического пространства-времени. Широко используется и в других построениях теоретической физики, в частности, в биметрической теории гравитации на пространстве-времени рассматривают сразу две метрики.

Содержание

Способы задания

Координатное представление

Метрический тензор в локальных координатах x^1,x^2,\dots,x^n, обычно задаётся как ковариантное тензорное поле g_{ij}\ . Через него определяются скалярные произведения координатных векторных полей \partial_i=\frac{\partial}{\partial x^i}:

\left\langle\partial_i,\partial_j\right\rangle=g_{ij}.

А для любых векторных полей, скалярное произведение вычисляется по формуле

\left\langle v,w\right\rangle=g_{ij}v^iw^j,

где v=v^i\partial_i, w=w^i\partial_i — представление векторных полей в локальных координатах.

Замечания

Иногда метрический тензор задаётся двойственным способом, с помощью контравариантного тензора gij. В случае невырожденных метрик

g^{ij}g_{jk}=\delta^i_k,

где \delta^i_kсимвол Кронекера.

Так, оба способа эквивалентны, но оба представления метрики бывают полезны. Для вырожденных метрик иногда удобнее пользоваться именно контравариантной метрикой. Например, субриманова метрика может быть определена через тензор gij, но тензор gij для неё неопределён.

Представление в поле реперов

Иногда удобно задавать метрический тензор через выбранное (не обязательно координатное, как это описано выше) поле реперов. То есть выбором реперного поля ~\{e_i(p)\} и матрицы g_{ik}(p) = \langle e_i(p), e_k(p)\rangle.

Например, риманов метрический тензор может быть задан ортонормированным полем реперов[1].

Индуцированная метрика

Метрика, которая индуцируется гладким вложением r многообразия M в евклидово пространство E, может быть посчитана по формуле:

g = J_r^T J_r,

где Jr означает матрицу Якоби вложения r и J^T_rтранспонированная к ней. Иначе говоря, скалярные произведения базисных координатных векторов касательного пространства \frac{\partial}{\partial x_i} определяются как

g_{ij}=g\left(\frac\partial{\partial x_i},\frac\partial{\partial x_j}\right)=
\left\langle\frac{\partial r}{\partial x_i},\frac{\partial r}{\partial x_j}\right\rangle,

где \langle*,*\rangle обозначает скалярное произведение в E.

Более общо

Пусть (N,h) многообразие с метрикой и r:M\to N гладкое вложение. Тогда метрика g на M, определённая равенством

g(X,Y) = h(dr(X),dr(Y))

называется индуцированной метрикой. Здесь dr обозначает дифференциал отображения r.

Типы метрических тензоров

Множество метрических тензоров g подразделяется на два класса:

  • невырожденные или псевдоримановы метрики, когда \ \det(g_{ij}) \neq 0 во всех точках многообразия. Среди невырожденных метрических тензоров, в свою очередь, различаются
    • риманов метрический тензор (или риманова метрика) для которого квадратичная форма является положительно определенной. Многообразие с выделенным римановым метрическим тензором называется римановым, они имеют естественную структуру метрического пространства.
    • собственно псевдориманов метрический тензор (или индефинитная метрика), когда форма не является положительно определенной. Многообразие с выделенным псевдориамоновым метрическим тензором называется (собственно) псевдоримановым.
  • вырожденные, когда \ \det(g_{ij}) = 0 либо \ \det(g^{ij}) = 0 в некоторых точках.

Обычно под метрическим тензором без специального на то указания понимается риманов метрический тензор; но если, рассматривая невырожденный метрический тензор, хотят подчеркнуть, что речь идет именно о римановом, а не псевдоримановом метрический тензоре, то о нём говорят как о собственно римановом метрическом тензоре.

Иногда под псевдоримановым тензором и псевдоримановым многообразием понимают то, что выше определено как собственно псевдоримановы метрика и многообразие, а для первых сохраняется только термин «невырожденная метрика» и соответственно «многообразие с невырожденной метрикой».

Связанные определения

  • Вектор нулевой длины в пространстве с псевдоримановой метрикой называется изотропным (также нулевым или светоподобным) и задает определенное изотропное направление на многообразии; например, свет в пространственно-временном континууме путешествует вдоль изотропных направлений.
  • Многообразие с выделенным римановым метрическим тензором называется риманово многообразие
  • Многообразие с выделенным псевдоримановым метрическим тензором называется псевдориманово многообразие

Свойства

  • Риманов метрический тензор может быть введен на любом паракомпактном гладком многообразии.
  • Индефинитная метрика не порождает метрического пространства. Однако на ее основе может быть, по крайней мере в некоторых случаях, специальным образом построена топология (см. Топология Александрова), вообще говоря, не совпадающая с естественной топологией многообразия.

Метрика и объём

Определитель матрицы метрического тензора | det{gij} | дает квадрат объема параллелепипеда, натянутого на базисные векторы. (В ортонормированных базисах это единица).

Поэтому величина \sqrt{|\det \{g_{ij}\}|} играет важную роль при вычислении объемов, а также при интегрировании по объему. В частности, \sqrt{|\det \{g_{ij}\}|} входит в общее выражение тензора Леви-Чивиты, используемого для вычисления смешанного произведения, векторного произведения и их многомерных аналогов.

Интегрирование же по объему включает этот множитель, например, при необходимости проинтегрировать в координатах какой-то скаляр (чтобы результат был инвариантным):

S = \int s(x)\,d\Omega = \int s(x) \sqrt{|\det \{g_{ij}\}|}\,dx^1\,dx^2\,\ldots\,dx^n,

где dΩ — это элемент n-мерного объема, а dxiдифференциалы координат.

  • Для подмногообразий объём (площадь) определяется как объём (площадь) относительно индуцированной метрики.

Примеры

  • Метрический тензор на евклидовой плоскости:
    • В прямоугольных декартовых координатах единичного масштаба метрический тензор постоянен (не зависит от координат) и представлен единичной матрицей (его компоненты равны символу Кронекера)
      g = \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix},\ \ g_{ij}=\delta_{ij}
    • В прямоугольных декартовых координатах неединичного масштаба метрический тензор представлен постоянной (не зависящей от координат) диагональной матрицей, ненулевые компоненты которой определяются масштабом по каждой оси (вообще говоря они не равны).
    • В косоугольных декартовых координатах метрический тензор постоянен (не зависит от координат) и положительно определён, но в остальном, вообще говоря, представлен произвольной симметричной матрицей.
    • В полярных координатах: (r,θ)
      g = \begin{bmatrix} 1 & 0 \\ 0 & r^2\end{bmatrix} \
  • Метрический тензор на сфере. Сфера (двумерная) радиуса R, вложенная в трехмерное пространство, имеет естественную метрику, индуцированную евклидовой метрикой объемлющего пространства. В стандартных сферических коордиранах (\theta,\varphi) метрика принимает вид:
    g = \begin{bmatrix} R^2 & 0 \\ 0 & R^2 \sin^2 \theta\end{bmatrix}.
  • Метрический тензор для трехмерного евклидова пространства:
    • В прямоугольных декартовых координатах единичного масштаба метрический тензор постоянен (не зависит от координат) и представлен единичной матрицей (его компоненты равны символу Кронекера)
      g = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix},\ \ g_{ij}=\delta_{ij}
    • В прямоугольных декартовых координатах неединичного масштаба метрический тензор представлен постоянной (не зависящей от координат) диагональной матрицей, ненулевые компоненты которой определяются масштабом по каждой оси (вообще говоря они не равны).
    • В косоугольных декартовых координатах метрический тензор постоянен (не зависит от координат) и положительно определён, но в остальном, вообще говоря, представлен произвольной симметричной матрицей.
    • В сферических координатах: (r,θ,φ):
      g = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta\end{bmatrix}.

Изоморфизм между касательным и кокасательным пространством

Метрический тензор устанавливает изоморфизм между касательным пространством и кокасательным пространством: пусть v \in T_p M — вектор из касательного пространства, тогда для метрического тензора g на M, мы получаем, что g(v,\cdot), то есть отображение, которое переводит другой вектор w \in T_p M в число g(v,w), является элементом дуального пространства линейных функционалов (1-форм) T_p^*M. Невырожденность метрического тензора превращает это отображение в биекцию, а тот факт, что g сам по себе есть тензор, делает это отображение независимым от координат.

Для тензорных полей, это позволяет «поднимать и опускать индексы» у любого тензорного поля (жаргонное название — «жонглирование индексами»). В компонентах операция поднятия-опускания индекса, выглядит так:

\ g_{ij}v^j = v_i — опускание индекса для вектора,
\ g^{ij}v_j = v^i — поднятие индекса для вектора,
\ g^{ij}g_{mn}T_{j\ \ \ pq}^{\ nrs} = T_{\ m\ \ pq}^{i\ \ rs} — пример одновременного поднятия индекса j и опускания индекса n для тензора большой валентности.

(К скалярам эта операция, естественно, не применяется).

Для тензороподобных объектов (не являющихся тензорами), как символы Кристоффеля, преобразование контравариантных компонент в ковариантные и обратно определяется, как правило, так же как и для тензорных. При желании жонглирование можно применить и к матрицам Якоби, только в этом случае нужно проследить за тем, что метрика для поднятия-опускания первого индекса будет, конечно, вообще говоря отличаться от метрики для такой же операции со вторым.

Примечания

  1. См. например
    • Картан Э. Ж. Риманова геометрия в ортогональном репере. — М.: изд-во МГУ, [1926-1927]1960
    • Картан Э. Ж. Теория конечных непрерывных групп и дифференциальная геометрия изложенная методом подвижного репера. — М.: изд-во МГУ, [1930]1963

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Основной тензор" в других словарях:

  • МЕТРИЧЕСКИЙ ТЕНЗОР — основной тензор, фундаментальный тензор, поле дважды ковариантного симметрич. тензора на n мерном дифференцируемом многообразии . Задание на М. т. вводит в касательном к в точке векторном пространстве скалярное произведение контравариантных… …   Математическая энциклопедия

  • РИЧЧИ ТЕНЗОР — дважды ковариантный тензор, получаемый из Римана тензора . путем свертывания верхнего индекса с нижним: В римановом пространстве VnP. т. является симметрическим: . В результате свертывания Р. т. с контравариантным метрич. тензором gij… …   Математическая энциклопедия

  • МЕТРИЧЕСКИЙ ТЕНЗОР — совокупность величин, определяющих геом. свойства пространства (его метрику). В теории относительности М. т. определяет метрику пространства времени. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М.… …   Физическая энциклопедия

  • КОНФОРМНО-ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ — раздел конформной геометрии, в котором геометрические образы, инвариантные при конформных преобразованиях, изучаются методами анализа бесконечно малых, в первую очередь дифференциального исчисления. В конформной плоскости M2 каждая точка и круг… …   Математическая энциклопедия

  • МОНД — Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности или существенно (количественно или принципиально) модифицирующие ее. К альтернативным теориям гравитации часто… …   Википедия

  • Альтернативные теории гравитации — Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности (ОТО) или существенно (количественно или принципиально) модифицирующие ее. К альтернативным теориям гравитации… …   Википедия

  • Магнитное поле —     Классическая электродинамика …   Википедия

  • НЕЛИНЕЙНАЯ ОПТИКА — раздел оптики, охватывающий исследования распространения мощных световых пучков в тв. телах, жидкостях и газах и их вз ствия с в вом. Сильное световое поле изменяет оптич. хар ки среды (показатель преломления, коэфф. поглощения), к рые становятся …   Физическая энциклопедия

  • Магнетизм —     Классическая электродинамика …   Википедия

  • Механика —         [от греч. mechanike (téchne) наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»