Европа (спутник Юпитера)

Европа (спутник Юпитера)
Европа
спутник Юпитера
Европа в натуральных цветах (снимок «Галилео»)
Европа в натуральных цветах (снимок «Галилео»)
История открытия
Первооткрыватель Галилео Галилей
Дата открытия 1610 год
Орбитальные характеристики
Большая полуось 671 тыс. км
Эксцентриситет 0,0094 (близка к круговой)
Период обращения синхронизирован (повёрнут к Юпитеру одной стороной)
Наклон орбиты 0,47° к юп. экватору; 1,79° к эклиптике
Физические характеристики
Диаметр 3122 км (0,24 земного д-ра)
Площадь поверхности 31 млн км² (0,06 пов. Земли)
Масса 4,8×10²² кг (0,008 массы Земли)
Плотность 3,01 г/см³
Ускорение свободного падения 1,31 м/с² (0,13 g)
Период обращения вокруг своей оси синхронизирован (повёрнут к Юпитеру одной стороной)
Наклон осевого вращения отсутствует
Альбедо 0,67
Температура поверхности 103 К (средняя)
Атмосфера Почти отсутствует, имеются следы кислорода

Евро́па (др.-греч. Ἐυρώπη) — спутник Юпитера, наименьший из четырёх галилеевых спутников. Предположительно, под ледяной поверхностью спутника имеется океан, в котором не исключается существование жизни.

Содержание

История открытия и название

Европа была открыта Галилео Галилеем в 1610 году с помощью изобретённого им телескопа. На открытие спутника претендовал также немецкий астроном Симон Мариус, который наблюдал Европу в 1609 году, но вовремя не опубликовал данные об этом.

Европа названа по имени персонажа древнегреческой мифологиивозлюбленной Зевса (Юпитера).

Название «Европа» было предложено С. Мариусом в 1614 году, однако в течение долгого времени оно практически не использовалось. Галилей назвал четыре открытые им спутника Юпитера «планетами Медичи» и дал им порядковые номера; Европу он обозначил как «второй спутник Юпитера». Лишь с середины XX века название «Европа» стало общеупотребительным.

Физические характеристики

Внутреннее строение Европы

Европа относится к числу крупнейших спутников планет Солнечной системы; по размерам она близка к Луне.

Европа всегда повёрнута к Юпитеру одной стороной. Ио, Европа и Ганимед находятся в орбитальном резонансе — их орбитальные периоды относятся как 1:2:4.

Европа больше похожа на планеты земной группы, чем другие «ледяные спутники», и в значительной степени состоит из горных пород. Она полностью покрыта слоем воды толщиной предположительно порядка 100 км (частью — в виде ледяной поверхностной коры толщиной 10—30 км; частью, как полагают, — в виде подповерхностного жидкого океана). Далее залегают горные породы, а в центре предположительно находится небольшое металлическое ядро.

Поверхность

Поверхность Европы очень ровная, лишь немногие образования, напоминающие холмы, имеют высоту несколько сот метров. Высокое альбедо спутника свидетельствует о том, что поверхностный лёд довольно чистый, и, следовательно, «молодой» (полагают, что, чем чище лёд на поверхности «ледяных спутников», тем он моложе). Количество кратеров невелико, имеется только три кратера диаметром больше 5 км, что также говорит об относительной молодости поверхности. По оценкам, её возраст не превышает 30 млн. лет, и, следовательно, Европа обладает высокой геологической активностью. В то же время, сравнение фотографий «Вояджеров» и «Галилео» не выявило каких-либо изменений за 20 лет.

Поверхность Европы по земным меркам очень холодная — 150—190°С ниже нуля. На поверхности спутника должна наблюдаться высокая радиация, так как орбита Европы проходит через мощный радиационный пояс Юпитера.

Сложная система линий на поверхности (цвета усилены)

Вся поверхность Европы испещрена множеством пересекающихся линий. Это разломы и трещины ледяного панциря. Некоторые линии почти полностью опоясывают планету. Система трещин в ряде мест напоминает трещины на ледяном панцире Северного полюса Земли (ср. снимки участков Земли и Европы).

Предполагают, что поверхность Европы претерпевает постоянные изменения, в частности, образуются новые разломы. Края некоторых трещин могут двигаться относительно друг друга, причём подповерхностная жидкость иногда может подниматься через трещины наверх. На Европе имеются протяжённые двойные хребты (см. снимок); возможно, они образуются в результате нарастания льда вдоль кромок открывающихся и закрывающихся трещин (см. схему образования хребтов).

Нередко встречаются и тройные хребты. Полагают, что механизм их образования происходит по следующей схеме. На первом этапе в результате приливных деформаций в ледяном панцире образуется трещина, края которой «дышат», разогревая окружающее вещество. Вязкий лёд внутренних слоёв расширяет трещину и поднимается вдоль неё к поверхности, загибая её края в стороны и вверх. Выход вязкого льда на поверхность образует центральный хребет, а загнутые края трещины — боковые хребты. Эти геологические процессы могут сопровождаться разогревом вплоть до плавления локальных областей и возможных проявлений криовулканизма.

На поверхности спутника имеются протяжённые полосы, покрытые рядами параллельных бороздок. Центр полос светлый, а края тёмные и размытые. Предположительно, полосы образовались в результате серий криовулканических водных извержений вдоль трещин. При этом тёмные края полос, возможно, сформировались в результате выброса на поверхность газа и осколков пород. Имеются и полосы другого типа (см. снимок), которые, как полагают, образовались в результате «разъезжания» двух поверхностных плит, с дальнейшим заполнением трещины веществом из недр спутника.

Рельеф некоторых частей поверхности позволяет предположить, что в этих участках поверхность когда-то была полностью расплавлена, и в воде даже плавали льдины и айсберги. Причём видно, что льдины (вмороженные ныне в ледяную поверхность) ранее образовывали единую структуру, но затем разъехались и повернулись.

Обнаружены тёмные «веснушки» (см. снимок) — выпуклые и вогнутые образования, которые могли сформироваться в результате процессов, аналогичным лавовым излияниям (под действием внутренних сил «тёплый», мягкий лёд двигается от нижней части поверхностной корки вверх, а холодный лёд оседает, погружаясь вниз; это ещё одно из доказательств присутствия жидкого, тёплого океана под поверхностью). Встречаются и более обширные тёмные пятна (см снимок) неправильной формы, образовавшиеся, предположительно, в результате расплавления поверхности под действием приливов океана, либо в результате выхода внутреннего вязкого льда. Таким образом, по тёмным пятнам можно судить о химическом составе внутреннего океана и, возможно, прояснить в будущем вопрос о существовании в нём жизни.

Имеются участки с волнообразной поверхностью, образовавшиеся, вероятно, в результате процессов сжатия ледяного панциря.

На поверхности также имеется кратер Пвилл (см. фото), в центре которого находится горка, превышающая его края по высоте (см. реконструкцию), что может свидетельствовать о выходе мягкого льда или воды через отверстие, пробитое метеоритом.

На этом участке размером 10×16 км видны несколько типов ландшафтов: хаотическая область (справа), «куски» хребтов (слева вверху), небольшие кратеры, разветвлённое образование неясной геологической природы

Ландшафты Европы классифицируют на следующие основные типы:

  • Равнинные области. Гладкие равнины могут образоваться в результате активности криовулканов, которые извергаются на поверхность, заполняя растекающейся водой огромные площади.
  • Хаотические области, которые напоминают случайно разбросанные «обломки» разных геометрических форм.
  • Области с преобладанием линий и полос.
  • Хребты (как правило двойные).
  • Кратеры.

Океан

Вышеприведённые характеристики поверхности Европы свидетельствуют о существовании жидкого океана под ледяной коркой на её поверхности. Глубина океана — до 90 км; его объём превышает объём мирового океана Земли. Тепло, необходимое для поддержания его в жидком состоянии, предположительно вырабатывается за счёт приливных взаимодействий (в частности, приливы поднимают поверхность спутника на высоту до 30 метров). В то же время, существует и альтернативная теория, объясняющая характер поверхности наличием не жидкого океана, а слоя мягкого льда.

Этот участок с «вмороженными льдинами» свидетельствует о возможном полном расплавлении некоторых участков поверхности в прошлом

Существование подповерхностного океана подтверждается переменным характером магнитного поля Европы. Если бы поле образовалось под действием ферромагнитного ядра, то оно было бы гораздо стабильнее и слабее. Магнитные полюса расположены вблизи экватора спутника и постоянно смещаются. Изменения мощности и ориентации поля коррелируют с прохождением Европы через магнитное поле Юпитера. Это можно объяснить лишь наличием токопроводящей жидкости (воды) под поверхностью спутника: сильное магнитное поле Юпитера вызывает электротоки в солёном океане Европы, которые и формируют её необычное магнитное поле.

Спектральный анализ тёмных линий и пятен на поверхности показал наличие солей, в частности, сульфата магния («английская соль»). Красноватый оттенок позволяет предположить наличие также сернистых и железистых веществ. По-видимому, эти соли содержатся в океане Европы. Кроме того, обнаружены следы перекиси водорода и сильных кислот.

Предполагается, что подлёдный океан Европы близок по своим параметрам к участкам океанов Земли вблизи глубоководных геотермальных источников, а также к подлёдным озёрам, таким, как озеро Восток в Антарктиде. В таких водоёмах может существовать жизнь. В то же время, некоторые учёные полагают, что океан Европы может представлять собой довольно ядовитую субстанцию, не слишком подходящую для жизнедеятельности организмов.

Помимо Европы, океаны предположительно имеются на Ганимеде и Каллисто (судя по структуре их магнитных полей). Но, согласно расчётам, жидкий слой на этих спутниках начинается глубже и имеет температуру существенно ниже нуля (при этом вода остаётся в жидком состоянии благодаря высокому давлению).

Открытие на Европе водяного океана имеет важное значение для поисков внеземной жизни. Поскольку поддержание океана в тёплом состоянии происходит не столько благодаря солнечному излучению, сколько в результате приливного разогрева, то это снимает необходимость наличия близкой к планете звезды для существования жидкой воды — необходимого условия возникновения белковой жизни. Следовательно, условия для формирования жизни могут возникать в периферийных областях звёздных систем, около маленьких звёзд и даже вдали от звёзд, например, в системах планетаров.

Атмосфера

Космический аппарат «Галилео» обнаружил на Европе ионосферу, что указывало на существование атмосферы у спутника. Впоследствии с помощью орбитального телескопа «Хаббл» у Европы действительно были замечены следы крайне слабой атмосферы, давление которой не превышает 1 микропаскаль. Атмосфера состоит из кислорода, образовавшегося в результате разложения льда на водород и кислород под действием солнечной радиации (лёгкий водород при столь низком тяготении улетучивается в космос).

Изучение Европы с помощью космических аппаратов

Первые фотографии (см.) Европы из космоса были сделаны станцией «Пионер-10», которая пролетела мимо Юпитера в декабре 1973 года. Качество этих снимков лучше того, что было доступно телескопам того времени.

В марте 1979 года Европу с пролётной траектории изучал «Вояджер-1» (максимальное сближение — 732 тыс. км), а в июле — «Вояджер-2» (190 тыс. км). Космические аппараты передали качественные снимки спутника (например, см.) и провели ряд измерений. Гипотеза о существовании на спутнике жидкого океана появились именно благодаря данным «Вояджеров».

С декабря 1995 по сентябрь 2003 г. систему Юпитера изучал «Галилео». Из 35-ти витков аппарата вокруг Юпитера, 11 были посвящены изучению Европы (максимальное сближение — 201 км). «Галилео» обследовал спутник довольно детально, были получены новые доказательства в пользу существования океана. В 2003 году «Галилео» был намеренно уничтожен в атмосфере Юпитера, чтобы в будущем неуправляемый аппарат не упал на Европу и не занёс на спутник земные микроорганизмы.

Субмарина («гидробот») проникает в океан Европы (взгляд художника)

В последние годы разработано несколько перспективных проектов изучения Европы с помощью космических аппаратов. Один из них — амбициозный проект Jupiter Icy Moons Orbiter, который первоначально планировался в рамках программы «Прометей» по разработке космического аппарата с ядерной энергоустановкой и ионным двигателем. Этот план был отменён в 2005 году из-за нехватки средств. В настоящее время в НАСА прорабатывается проект Europa Orbiter, предполагающий вывод на орбиту Европы космического аппарата с целью подробного изучения спутника. Запуск аппарата может быть произведён в ближайшие 7—10 лет, при этом возможно сотрудничество с ЕКА, которое также разрабатывает проекты по изучению Европы. Однако в настоящее время (2006) пока нет конкретных планов по финансированию и осуществлению этого проекта.

7 января 2008 г. директор Института космических исследований Л. М. Зелёный заявил, что европейские и российские учёные планируют направить к Юпитеру и Европе экспедицию из нескольких космических аппаратов. Проект предполагает выведение на орбиты Юпитера и Европы двух космических аппаратов, но российские учёные предлагают включить в программу третий, спускаемый аппарат, который совершит посадку на поверхности Европы. Спускаемый аппарат планируется посадить в одном из разломов в многокилометровом слое льда на поверхности планеты. После посадки, аппарат расплавит полуметровый слой льда и начнёт поиск простейших форм жизни. Проект получил название «Лаплас», и будет включён в программу Европейского космического агентства на период с 2015 по 2025 год. В нём приглашены участвовать российские учёные из Института космических исследований, НПО Лавочкина и других российских организаций космической тематики. [1][2]

Европа в фантастике, кино и играх

  • Европа играет важную роль в романе Артура Кларка «2010: Одиссея Два» и одноимённом фильме Питера Хаймса. Внеземной разум намеревается ускорить эволюцию примитивной жизни, имеющейся в подлёдном океане Европы, и с этой целью трансформирует Юпитер в звезду. В романе «2061: Одиссея Три» Европа предстаёт уже как тропический водный мир.
В романе Кларка "Молот Господень" (1996) Европа описана как безжизненный мир.
Пейзаж на Европе из книги К.Фламмариона «Астрономия для дам» (1903)
  • В «Схизматрице» Брюса Стерлинга Европа описана как мёртвый «ледяной» мир с безжизненным внутренним океаном. Одна из человеческих цивилизаций, расселившихся по Солнечной системе, принимает решение переселиться на Европу. Они создают на спутнике биосферу, а также полностью видоизменяют человека, чтобы он мог комфортно существовать в океане Европы.
  • В повести Грега Бира «Божья кузница» Европа разрушается пришельцами, которые используют её лёд с целью изменения среды обитания на других планетах.
  • В произведении Дэна Симмонса «Илион» Европа является местом обитания одной из разумных машин.
  • В книге Йена Дугласа «Схватка за Европу» на Европе находится ценный инопланетный артефакт, за обладание которым в 2067 году сражаются американские и китайские войска.
  • В повести Мишеля Саважа «Узники Европы» («Outlaws of Europa») ледяной спутник превращён в гигантскую тюрьму.
  • В компьютерной игре Infantry под ледяной корой Европы расположены города.
  • В игре Battlezone Европа в числе некоторых других тел Солнечной Системы представлена в виде холодной, ледяной арены битвы двух сверхдержав: США и воображаемого Советского Блока.
  • В игре Abyss: Incident at Europa действие происходит на подводной базе в океане Европы.
  • В одном из эпизодов аниме Cowboy Bebop команда космического корабля Bebop вынужденно высаживается на Европу, которая изображена в виде провинциальной планеты с маленьким населением.
  • Помимо художественных произведений имеются концепции (довольно фантастичные) колонизации Европы. В частности, в рамках проекта «Артемис» ([1], [2], [3]) предлагается использовать жилища типа иглу либо размещать базы на внутренней стороне ледяной коры (создавая там «воздушные пузыри»); океан предполагается исследовать с помощью подводных лодок. А политолог и инженер авиакосмической техники Т. Гэнгэйл даже разработал календарь для европанских колонистов (см. [4]).

См. также

Литература

  • Ротери Д. Планеты. — М.: Фаир-пресс, 2005. ISBN 5-8183-0866-9
  • Под ред. Д. Моррисона. Спутники Юпитера. — М.: Мир, 1986. В 3-х томах, 792 с.

Ссылки

Примечания

  1. Российские и европейские учёные планируют искать жизнь на спутнике Юпитера, Интерфакс
  2. Доклад член-корр. РАН Л.М. Зеленого «Миссия ЕКА к Европе и системе Юпитера» на заседании бюро Совета РАН по космосу 29 мая 2007 года


Wikimedia Foundation. 2010.

Смотреть что такое "Европа (спутник Юпитера)" в других словарях:

  • Европа (спутник Юпитера) — Европа, спутник планеты Юпитер, диаметр 3100 мм, среднее расстояние от центра планеты 670 900 км. Е. один из четырёх ярких спутников Юпитера, открытых Г. Галилеем в 1610 …   Большая советская энциклопедия

  • ЕВРОПА (спутник) — ЕВРОПА (латинское название Europa), спутник Юпитера (см. ЮПИТЕР (планета)), среднее расстояние до планеты 599,6 тыс. км, эксцентриситет орбиты 0,0094, период обращения вокруг планеты 3 сут 13 ч 13 мин. Из за сильного приливного действия Юпитера… …   Энциклопедический словарь

  • Европа (спутник) — У этого термина существуют и другие значения, см. Европа (значения). Европа …   Википедия

  • ГАНИМЕД (спутник Юпитера) — ГАНИМЕД (латинское название Ganymede), спутник Юпитера (см. ЮПИТЕР (планета)), среднее расстояние до планеты 998,9 тыс. км, эксцентриситет орбиты 0,0013, период обращения вокруг планеты 7 сут 3 ч 43 мин. Из за сильного приливного действия Юпитера …   Энциклопедический словарь

  • Ио (спутник Юпитера) — Ио Снимок «Галилео» Орбитальные характеристики Большая полуось (радиус) 422 тыс. км Эксцентриситет (вытянутость) 0,004 (близка к круговой) Период обращения 1,77 дня …   Википедия

  • Метида (спутник Юпитера) — Метида спутник Юпитера Метида (снимок «Галилео») История открытия Первооткрыватель Стивен Синнот Дата открытия 4 марта 1979 Орб …   Википедия

  • Феба (спутник Юпитера) — Не следует путать с Феба (спутник Сатурна). Фива Открытие Астроном Стивен Синнот / Вояджер 1 Дата открытия 05 марта 1979 года Орбитальные характеристики Перигей 218 000 км …   Википедия

  • КАЛЛИСТО (спутник Юпитера) — КАЛЛИСТО (латинское название Callisto), спутник Юпитера (см. ЮПИТЕР (планета)), среднее расстояние до планеты 1,81 млн км, эксцентриситет орбиты 0,0074, период обращения вокруг планеты 16 сут 16 ч 33 мин. Из за сильного приливного действия… …   Энциклопедический словарь

  • Каллисто (спутник Юпитера) — Каллисто Снимок «Галилео» Орбитальные характеристики Большая полуось (радиус) 1,88 млн. км Эксцентриситет (вытянутость) 0,007 (близка к круговой) Период обращения 16,69 дня На …   Википедия

  • Элара (спутник Юпитера) — Элара спутник Юпитера [[Файл: |200px|]] История открытия Первооткрыватель Чарльз Перрайн Дата открытия 2 января 1905[1] …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»