- Неравенство Коши
-
Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы.
Неравенство Коши — Буняковского иногда, особенно в иностранной литературе, называют неравенством Шварца и неравенством Коши — Буняковского — Шварца («неравенство КБШ»), хотя работы Шварца на эту тему появились только спустя 25 лет после работ Буняковского[1]. Конечномерный случай этого неравенства называется неравенством Коши и был доказан Коши в 1821 году.
Содержание
Формулировка
Пусть дано линейное пространство
со скалярным произведением
. Пусть
— норма, порождённая скалярным произведением, то есть
. Тогда для любых
имеем:
причём равенство достигается тогда и только тогда, когда векторы
и
пропорциональны (коллинеарны).
Комментарии
В конечномерном случае можно заметить, что
, где
— площадь параллелограмма, натянутого на векторы
и
.
В общем случае:
Примеры
- В пространстве комплекснозначных квадратично суммируемых последовательностей
неравенство Коши — Буняковского имеет вид:
где
обозначает комплексное сопряжение
.
- В пространстве комплексных квадратично интегрируемых функций
неравенство Коши — Буняковского имеет вид:
- В пространстве случайных величин с конечным вторым моментом
неравенство Коши — Буняковского имеет вид:
- где
обозначает ковариацию, а
— дисперсию.
Доказательство
- Если
то
верно следующее
Значит дискриминант многочлена
неположительный, то есть
Следовательно,
- Если
то представим скалярное произведение в тригонометрическом виде
Определим вектор
Тогда
и
К скалярному произведению
применим результат первого пункта доказательства.
Литература
Примечания
- ↑ Bounjakowsky W. «Mémoires de l’Académie des sciences de St-Pétersbourg. 7 série», 1859, t. 1, № 9.
Категории:- Функциональный анализ
- Линейная алгебра
- Неравенства
- Теория вероятностей
- Теория операторов
Wikimedia Foundation. 2010.