- Пентагон (фигура)
-
Правильный пятиугольник или пентагон (греч. πενταγωνον) — геометрическая фигура, правильный многоугольник с пятью сторонами.
Содержание
Свойства
- У правильного пятиугольника угол равен
- Площадь правильного пятиугольника с длиной стороны t рассчитывается по формуле:
,
или
,
где R — радиус описанной окружности, r — радиус вписанной окружности. - Отношение диагонали правильного пятиугольника к стороне равно золотому сечению, то есть числу
.
Поэтому радиус вписанной окружности, радиус описанной окружности, высоту и площадь правильного пятиугольника можно вычислить и без использования тригонометрических функций:
- Высота правильного пятиугольника:
- Площадь правильного пятиугольника:
- Радиус вписанной окружности правильного пятиугольника:
- Радиус описанной окружности правильного пятиугольника:
Построение
Правильный пятиугольник может быть построен с помощью циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.
Вот один из методов построения правильного пятиугольника в заданной окружности:
- Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O. (Это зелёная окружность на схеме справа).
- Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.
- Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.
- Постройте точку C посередине между O и B.
- Проведите окружность с центром в C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.
- Проведите окружность с центром в A через точку D. Обозначьте её пересечения с оригинальной (зелёной окружностью) как точки E и F.
- Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.
- Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.
- Постройте правильный пятиугольник AEGHF.
Альтернативный метод построения правильного многоугольника с помощью линейки и циркуляПолучение с помощью полоски бумаги
Правильный пятиугольник можно получить, завязав узлом полоску бумаги.
Интересные факты
- Додекаэдр — единственный из правильных многогранников, грани которого представляют собой правильные пятиугольники.
- Пентагон — здание Министерства обороны США имеет форму правильного пятиугольника.
- Правильный пятиугольник — правильный многоугольник с наименьшим количеством углов из тех, которыми нельзя замостить плоскость.
См. также
Правильные многоугольники Треугольник | Четырёхугольник | Пятиугольник | Шестиугольник | Семиугольник | Восьмиугольник | Девятиугольник | Семнадцатиугольник | 257-угольник | 65537-угольник (См. также: Многоугольник, Теорема Гаусса — Ванцеля) - У правильного пятиугольника угол равен
Wikimedia Foundation. 2010.