Большая полуось

Большая полуось

Большая полуось — это один из основных геометрических параметров объектов, образованных посредством конического сечения.

Содержание

Эллипс

Основные параметры эллипса

Большой осью эллипса называется его наибольший диаметр, прямая проходящая через центр и два фокуса. А большая полуось составляет половину этого расстояния, и таким образом, идёт от центра, через фокус, и на край эллипса. А под углом в 90° к большой полуоси располагается малая полуось — это минимальное расстояние от центра эллипса до его края. Для частного случая круга, большая и малая полуоси равны и являются радиусами. Таким образом, можно думать о большой и малой полуосях как о, своего рода, радиусах эллипса.

Длина большой полуоси a\,\! связана с длиной малой полуоси b\,\! через эксцентриситет e\,\! и коническое сечение l\,\!, следующим образом:

b = a \sqrt{1-e^2},\,
\ell=a(1-e^2),\,
a\ell=b^2.\,

Большая полуось представляет собой среднее значение наибольшего и наименьшего расстояния от точки эллипса до его фокусов. Рассмотрим теперь уравнение в полярных координатах, с точкой в начале координат (полюс) и лучом, начинающейся из этой точки (полярная ось):

r(1-e\cos\theta)=\ell.\,

Получим средние значения r={\ell\over{1+e}}\,\! и r={\ell\over{1-e}}\,\! и большую полуось a={\ell\over 1-e^2}.\,

Парабола

График построения параболы простейшей функции y = x2

Параболу можно получить как предел последовательности эллипсов, где один фокус остаётся постоянным, а другой отодвигается в назад, сохраняя l\,\! постоянным. Таким образом a\,\! и b\,\! стремятся к бесконечности, причём a\,\! быстрее, чем b\,\!.

Гипербола

Большая полуось гиперболы составляет половину минимального расстояния между двумя ветвями гиперболы, на положительной и отрицательной сторонах оси x\,\! (слева и справа относительно начала координат). Для ветви расположенной на положительной стороне, полуось будет равна:

\frac{\left( x-h \right)^2}{a^2} - \frac{\left( y-k \right)^2}{b^2} = 1.

Если выразить её через коническое сечение и эксцентриситет, тогда выражение примет вид:

a={\ell \over e^2-1 }.

Прямая, содержащая большую ось гиперболы, называется поперечной осью гиперболы.[1]

Астрономия

Орбитальный период

В небесной механике орбитальный период T\,\! обращения малых тел по эллиптической или круговой орбите вокруг более крупного центрального тела рассчитывается по формуле:

T = 2\pi\sqrt{a^3 \over \mu}

где:

a\,\! — это размер большой полуоси орбиты
 \mu — это стандартный гравитационный параметр (en:standard gravitational parameter)

Следует обратить внимание, что в данной формуле для всех эллипсов период обращения определяется значением большой полуоси, независимо от эксцентриситета.

В астрономии большая полуось, наряду с орбитальным периодом, является одним из самых важных орбитальных элементов орбиты космического тела .

Для объектов Солнечной системы большая полуось связана с орбитальным периодом по третьему закону Кеплера.

\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}

где:

T\,\! — орбитальный период в годах;
a\,\! — большая полуось в астрономических единицах.

Это выражение является частным случаем общего решения задачи двух тел Исаака Ньютона:

T^2= \frac{4\pi^2}{G(M+m)}a^3\,

где:

G\,\!гравитационная постоянная
M\,\! — масса центрального тела
m\,\! — масса обращающегося вокруг него спутника. Как правило, масса спутника настолько мала по сравнению с массой центрального тела, что ею можно пренебречь. Поэтому, сделав соответствующие упрощения в этой формуле, получим данную формулу в упрощённом виде, который приведён выше.

Орбита движения спутника вокруг общего с центральным телом центра масс (барицентра), представляет собой эллипс. Большая полуось используется в астрономии всегда применительно к среднему расстоянию между планетой и звездой, в результате орбиты планет Солнечной системы приведены к гелиоцентрической системе, а не к системе движения вокруг центра масс. Эту разницу удобнее всего проиллюстрировать на примере системы Земля-Луна. Отношение масс в этом случае составляет 81,30059. Большая полуось геоцентрической орбиты Луны составляет 384400 км. В то время как расстояние до Луны относительно центра масс системы Земля-Луна составляет 379700 км, из-за влияния массы Луны центр масс находится не в центре Земли, а в 4700 км от него. В итоге средняя орбитальная скорость Луны относительно центра масс составляет 1,010 км/с, а средняя скорость Земли 0,012 км/с. А общая сумма этих скоростей даёт орбитальную скорость Луны 1,022 км/с; тоже самое значение можно получить, рассматривая движение Луны относительно центра Земли, а не центра масс.

Среднее расстояние

Часто говорят, что большая полуось является средним расстоянием между центральным и орбитальным телом. Это не совсем верно, так как под средним расстоянием можно понимать разные значения – в зависимости от величины, по которой производят усреднение:

  • усреднение по эксцентрической аномалии. В таком случае среднее расстояние будет точно равно большой полуоси орбиты.
  • усреднение по истинной аномалии, тогда среднее расстояние будет точно равно малой полуоси орбиты.
  • усреднение по средней аномалии даст значение среднего расстояния, усреднённое по времени:
a \left(1 + \frac{e^2}{2}\right).\,
  • усреднение по радиусу, которое получают из следующего соотношения:
\sqrt{ab} = a\sqrt[4]{1-e^2}.\,


Энергия; расчёт большой полуоси методом векторов состояния

В небесной механике большая полуось a\,\! может быть рассчитана методом векторов орбитального состояния:

 a = { - \mu \over {2\varepsilon}}\,

для эллиптических орбит

 a = {\mu \over {2\varepsilon}}\,

для гиперболической траектории

и

 \varepsilon = { v^2 \over {2} } - {\mu \over \left | \mathbf{r} \right |}

(en:specific orbital energy)

и

 \mu = G(M+m ) \,

(стандартный гравитационный параметр), где:

v\,\! — орбитальная скорость спутника, на основе вектора скорости,
r\,\! — вектор положения спутника в координатах системы отсчёта, относительно которой должны быть вычислены элементы орбиты (например, геоцентрический в плоскости экватора — на орбите вокруг Земли, или гелиоцентрический в плоскости эклиптики — на орбите вокруг Солнца),
G\,\!гравитационная постоянная,
M\,\! и m\,\! — массы тел.

Большая полуось рассчитывается на основе общей массы и удельной энергии, независимо от значения эксцентриситета орбиты.

См. также

Примечания

Ссылки




Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Большая полуось" в других словарях:

  • большая полуось — didysis pusašis statusas T sritis fizika atitikmenys: angl. semi major axis vok. große Halbachse, f rus. большая полуось, f pranc. demi grand axe, m …   Fizikos terminų žodynas

  • большая полуось а — 3.2 большая полуось а: Максимальный радиус эллипсоида. Примечание Для эллипсоида, представляющего Землю, это радиус экватора. Источник: ГОСТ Р 52572 2006: Географические информационные системы. Координатная основа. Общие требования …   Словарь-справочник терминов нормативно-технической документации

  • большая полуось эллипсоида — 2.1.1 большая полуось эллипсоида : Параметр, характеризующий размер эллипсоида. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Большая полуось орбиты —         величина (элемент орбиты (См. Элементы орбиты)), определяющая вместе с эксцентриситетом орбиты (См. Эксцентриситет орбиты) её размеры …   Большая советская энциклопедия

  • Большая — постоянное или часто повторяющееся воздействие жидкостей на покрытие пола. Источник: МДС 31 12.2007: Полы жилых, общественных и производственных зданий с применением материалов фирмы "Хенкель Баутехник" …   Словарь-справочник терминов нормативно-технической документации

  • Большая комета 1811 года — C/1811 F1 (Большая комета) Открытие Первооткрыватель: Оноре Флагерье Дата открытия: 25 марта 1811 Альтернативные обозначения: 1811 I 1811a Характеристики орбиты Афелий: 424 а. е. Перигелий: 1,035412 а. е. Большая полуось …   Википедия

  • Большая мартовская комета 1843 года — C/1843 D1 (Большая мартовская комета) Зарисовка Большой мартовской кометы 1843, сделанная в Тасмании. Открытие Дата открытия: 5 февраля 1843 Альтернативные обозначения: 1843 I 1843a Характеристики орбиты Афелий: 129 а. е …   Википедия

  • Большая комета 1843 года — C/1843 D1 (Большая мартовская комета) Зарисовка Большой мартовской кометы 1843, сделанная в Тасмании. Открытие Дата открытия: 5 февраля 1843 Альтернативные обозначения: 1843 I 1843a Характеристики орбиты Афелий: 129 а. е …   Википедия

  • Большая комета 1965 года — C/1965 S1 (Икея Секи) Открытие Первооткрыватель: Каору Икея, Цуоми Секи Дата открытия: 18 сентября 1965 Альтернативные обозначения: 1965 VIII; 1965f Характеристики орбиты Эпоха: 7 октября 1965 …   Википедия

  • Малая полуось — Не следует путать с термином «Эллипсис». Эллипс и его фокусы Эллипс (др. греч. ἔλλειψις недостаток, в смысле недостатка эксцентриситета до 1) геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний от двух данных точек F1… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»