Элементы орбиты

Элементы орбиты

Одной из задач небесной механики является определение орбит небесных тел. Для задания орбиты спутника планеты, астероида или Земли используют так называемые орбитальные элементы. Они отвечают за задание базовой системы координат (точка отсчёта, оси координат), форму и размер орбиты, её ориентацию в пространстве и момент времени, в который небесное тело находится в определённой точке орбиты. В основном, используются два способа задания (при наличии системы координат):

  • при помощи векторов положения и скорости
  • при помощи орбитальных элементов[1]

Содержание

Кеплеровы элементы орбиты

Элементы орбиты

Традиционно, в качестве элементов орбиты используют шесть кеплеровых элементов орбиты[2]:

Другие элементы орбиты

Аномалии

Аномалии

Аномалия (в небесной механике) — угол используемый для описания движения тела по эллиптической орбите. Истинная аномалия v представляет собой угол между линией, соединяющей тело B с фокусом эллипса F, в котором находится тело притяжения, и линией соединяющей F с перицентром — точкой на орбите, самой близкой к F.

Средняя аномалия — для тела, движущегося по невозмущённой орбите — произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом средняя аномалия — угловое расстояние от перицентра гипотетического тела движущегося с постоянной угловой скоростью, равной среднему движению.

Эксцентрическая аномалия (обозначается E) — параметр используемый для выражения переменной длины радиус-вектора r. Уравнение связывающее эти величины имеет вид:

r = a(1-e \cdot \cos E), где
a — большая полуось,
e — эксцентриситет эллиптической орбиты.

Эта формула выводится из уравнений  cos E = x / a ; r^2 = (c-x)^2 + y^2 и y^2 = (1 - x^2/a^2)b^2, где x, y — координаты точки P, r — расстояние от этой точки до изображенного на рисунке фокуса s.

Истинная аномалия — угол между большой полуосью и лучом из фокуса в положение (\angle ZSP). Отсчитывается от перицентра.

Аргумент широты

В небесной механике, аргумент широты ( u ) — угловой параметр, который определяет положение тела, движущегося вдоль Кеплеровой орбиты. Это сумма часто используемых истинной аномалии и аргумента перицентра, образующая угол между радиус-вектором тела и линией узлов. Отсчитывается от восходящего узла по направлению движения.[3]

 u = \nu + \omega

где  u  — аргумент широты,  \nu  — истинная аномалия и  \omega  — аргумент перицентра.

Аномалистический период обращения

Аномалистический период обращения — промежуток времени, за который тело, перемещаясь по эллиптической орбите, дважды последовательно проходит через перицентр.

Примечания

  1. Дубошин Г. Н. Справочное руководство по небесной механике и астродинамике
  2. Здесь и далее рассматривается задача двух тел
  3. Иллюстрация «Аргумент перигея и аргумент широты» в Большой Советской энциклопедии. Архивировано из первоисточника 4 марта 2012. Проверено 13 января 2012.

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое "Элементы орбиты" в других словарях:

  • Элементы орбиты —         в астрономии, система величин (параметров), определяющих ориентацию орбиты небесного тела в пространстве, её размеры и форму, а также положение на орбите небесного тела в некоторый фиксированный момент. Невозмущённую орбиту, по которой… …   Большая советская энциклопедия

  • Элементы орбиты — набор параметров, однозначно характеризующий орбиту небесного тела …   Астрономический словарь

  • Элементы орбиты — см. Орбита …   Энциклопедия РВСН

  • элементы орбиты спутника — palydovo orbitos parametrai statusas T sritis automatika atitikmenys: angl. orbital elements of a satellite vok. Satellitenbahnelemente rus. элементы орбиты спутника, m pranc. paramètres d une orbite d un satellite, m …   Automatikos terminų žodynas

  • Кеплеровы элементы орбиты — Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) …   Википедия

  • Орбиты небесных тел —         траектории, по которым движутся небесные тела в космическом пространстве. Формы О. н. т. и скорости, с которыми по ним движутся небесные тела, определяются силой тяготения, а также силой светового давления, электромагнитными силами,… …   Большая советская энциклопедия

  • Орбитальные элементы — Одной из задач небесной механики является определение орбит небесных тел. Для задания орбиты спутника, планеты, спутника, астероида или Искусственного спутника Земли используют так называемые орбитальные элементы. Они отвечают за задание базовой… …   Википедия

  • Наклон орбиты — Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) Части эллипса (рис.2) Кеплеровы элементы  шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел: большая полуось ( ), эксцентриситет ( …   Википедия

  • Наклонение орбиты — Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) Части эллипса (рис.2) Кеплеровы элементы  шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел: большая полуось ( ), эксцентриситет ( …   Википедия

  • Наклонность орбиты — Кеплеровские элементы орбиты, включая аргумент перицентра (рис.1) Части эллипса (рис.2) Кеплеровы элементы  шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел: большая полуось ( ), эксцентриситет ( …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»