МОРДЕЛЛА ГИПОТЕЗА

МОРДЕЛЛА ГИПОТЕЗА

- гипотеза о конечности множества рациональных точек на алгебраич. кривой рода . Выдвинута Л. Морделлом [1] для случая, когда основное поле К- поле рациональных чисел. В настоящее время под М. г. понимается утверждение о конечности множества рациональных точек неприводимой алгебраич. кривой Xрода , определенной над полем Кконечного тина над полем рациональных чисел , в любом конечном расширении L/К. В такой форме М. г. не доказана (1982) ни для одной кривой. Получена редукция М. г. к наиболее трудному случаю, когда К- поле алгебраич. чисел (см. [3]). Известен ряд частных результатов, относящихся к М. г. Так, доказано [2], что множество конечно, если ранг группы K-изоморфизмов из Xв эллиптич. кривую Yбольше ранга группы Y(К). Установлена [7] конечность X(К)для широкого класса модулярных кривых и их поля определения К. Найдена [8] оценка роста высот

рациональных точек , показывающая, что они расположены гораздо "реже", чем на кривых рода Доказано также, что М. г. является следствием гипотезы Шафаревича о конечности числа алгебраич. кривых, имеющих заданный род , поле определения (конечное расширение ) и множество точек плохой редукции (см. [4], а также Зигеля теорема о целых точках). Геометрич. аналогом М. г. является утверждение о конечности числа сечений у расслоения

где - неособая проективная поверхность, В- кривая, а общий слой отображения f - неприводимая кривая рода . Это утверждение верно, если расслоение непостоянно, т. е. не является прямым произведением после нек-рого накрытия базы В, и характеристика основного поля кравна 0 (см. [3], [6]). Для постоянных расслоений можно утверждать лишь конечность числа классов, состоящих из сечений, алгебраически эквивалентных как кривые на V. Если же характеристика поля кположительна, то геометрич. аналог М. г. для постоянных расслоений неверен [4].

Лит.:[1] Моrdеll L. J., "Proc. Camb. Phil. Soc", 1922, v. 21, p. 179-92; [2] Демьяненко В. А., "Изв. АН СССР. Сер. матем.", 1966, т. 30, № 6, с. 1373-96; [3] Манин Ю. И., там же, 1963, т. 27, № 6, с. 1395-1440; [4] Раrsin А. N.. в кн.: Actes du Congres International des mathematiciens. 1970, t. 1, P., 1971, p. 467-71; [5] Grauert H., "Publ. Math. IHES", 1965, № 25, p. 131 - 50; [6] Lang S., Diophantine geometry, N. Y.- L., 1962; [7] Mаzur В., в кн.: Modular functions of one variable, [v. 5], В.- Hdlb.- N. Y., 1977, p. 107-48; [8] Mumfоrd D., "Amer. J. Math.", 1965, v. 87, № 4, p. 1007- 16.

A. H. Паршин.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "МОРДЕЛЛА ГИПОТЕЗА" в других словарях:

  • Гипотеза Морделла — …   Википедия

  • Теорема Фальтингса — Гипотеза Морделла  гипотеза о конечности множества рациональных точек на алгебраической кривой рода . Выдвинута Морделлом в 1922. Доказана Фальтингсом в 1983. Литература Mordell, L. J. On the rational solutions of the indeterminate equations …   Википедия

  • АЛГЕБРАИЧЕСКАЯ КРИВАЯ — алгебраическое многообразие размерности 1. А. к. является наиболее изученным объектом алгебраической геометрии. В дальнейшем под А. к. понимается, как правило, неприводимая А. к. над алгебраически замкнутым полем. Наиболее простым и интуитивно… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКАЯ ПОВЕРХНОСТЬ — двумерное алгебраическое многообразие. Вместе с алгебраическими кривыми А. п. представляют собой наиболее изученный класс алгебраич. многообразий. Богатство задач и идей, применяемых для их решения, делает теорию А. п. одним из самых интересных… …   Математическая энциклопедия

  • БИНАРНАЯ ФОРМА — форма от двух переменных, т. е. однородный многочлен где коэффициенты принадлежат заданному коммутативному кольцу с единицей. В качестве такого кольца часто выбирается кольцо целых рациональных чисел, кольцо целых элементов нек рого… …   Математическая энциклопедия

  • КОНЕЧНОСТИ ТЕОРЕМЫ — 1) К. т. в алгебраической геометрии утверждения о различных объектах алгебраич. геометрии (пространствах когомологий, алгебраич. многообразиях, схемах, расслоениях и т. п.), состоящие в том, что эти объекты зависят от конечного числа параметров… …   Математическая энциклопедия

  • ДИОФАНТОВА ГЕОМЕТРИЯ — диофантов анализ, область математики, посвященная изучению целочисленных и рациональных решений систем алгебраич. уравнений, или, иначе, изучению диофантовых уравнений, методами алгебраич. геометрии. Появление во 2 й пол. 19 в. теории алгебраич.… …   Математическая энциклопедия

  • Диофантова геометрия — Диофантова геометрия  подход к теории диофантовых уравнений, формулирующий задачи в терминах аглебраической геометрии над алгебраически незамкнутым базисным полем K, таким как поле рациональных чисел или конечное поле, или, обобщённо,… …   Википедия

  • ДЗЕТА-ФУНКЦИЯ — z ф у нкция, 1) Д. ф. в теории чисел класс аналитич. функций комплексного переменного, состоящий из z функции Римана, ее обобщений и аналогов. Д. ф. и их обобщения в виде L функций (см. Дирихле L функции )лежат в основе современной аналитич.… …   Математическая энциклопедия

  • ЭЛЛИПТИЧЕСКАЯ КРИВАЯ — неособая полная алгебраическая кривая рода 1. Теория Э. к. является истоком большей части современной алгебраич. геометрии. Но исторически теория Э. к. возникла как часть анализа, как теория эллиптических интегралов и эллиптических функций.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»