- Вязкость
-
Эта статья нуждается в дополнительных источниках для улучшения проверяемости.
Вы можете помочь улучшить эту статью, добавив ссылки на авторитетные источники.
Не подтверждённая источниками информация может быть поставлена под сомнение и удалена.Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса Теория упругости Напряжение · Тензор · Твёрдые тела · Упругость · Пластичность · Закон Гука · Реология · Вязкоупругость Гидродинамика Жидкость · Гидростатика · Гидродинамика · Вязкость · Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение Основные уравнения Уравнение непрерывности · Уравнение Эйлера · Уравнения Навье — Стокса · Уравнение диффузии · Закон Гука Известные учёные Ньютон · Гук
Бернулли · Эйлер · Коши · Стокс · НавьеСм. также: Портал:Физика Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.
Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.
Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.
Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011−1012 Па·с
Прибор для измерения вязкости называется вискозиметром.
Содержание
Сила вязкого трения
Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h:
Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости.
Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.
Вторая вязкость
Вторая вязкость, или объёмная вязкость — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.
Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.
Объёмная вязкость играет большую роль в затухании звука и ударных волн, и экспериментально определяется путём измерения этого затухания.
Вязкость газов
В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле
,
где — средняя скорость теплового движения молекул, − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность прямо пропорциональна давлению, а — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).
С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа , растущей с температурой как
Влияние температуры на вязкость газов
В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).
Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:[1]
где:
- μ = динамическая вязкость в (Па·с) при заданной температуре T,
- μ0 = контрольная вязкость в (Па·с) при некоторой контрольной температуре T0,
- T = заданная температура в Кельвинах,
- T0 = контрольная температура в Кельвинах,
- C = постоянная Сазерленда для того газа, вязкость которого требуется определить.
Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.
Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже
Газ C [K]
T0 [K]
μ0 [мкПа с]
Воздух 120 291.15 18.27 Азот 111 300.55 17.81 Кислород 127 292.25 20.18 Углекислый газ 240 293.15 14.8 Угарный газ 118 288.15 17.2 Водород 72 293.85 8.76 Аммиак 370 293.15 9.82 Оксид серы(IV) 416 293.65 12.54 Гелий 79.4[2] 273 19[3] См. также [1] (англ.).
Вязкость жидкостей
Динамический коэффициент вязкости
Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:
Коэффициент вязкости (динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:
Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение
где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.
Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.
Кинематическая вязкость
В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной
и эта величина получила название кинематической вязкости. Здесь — плотность жидкости; — динамическая вязкость (см. выше).
Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:
1 сСт = 1мм21c = 10−6 м2c
Ньютоновские и неньютоновские жидкости
Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):
где — тензор вязких напряжений.
Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.
С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.
Вязкость аморфных материалов
Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс[4]:
где — энергия активации вязкости (кДж/моль), — температура (К), — универсальная газовая постоянная (8,31 Дж/моль·К) и — некоторая постоянная.
Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости изменяется от большой величины при низких температурах (в стеклообразном состоянии) на малую величину при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса : сильные материалы имеют , в то время как ломкие материалы имеют .
Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:
с постоянными , , , и , связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклования это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Если температура существенно ниже температуры стеклования , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса
с высокой энергией активации , где — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а — энтальпия их движения. Это связано с тем, что при аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса
но с низкой энергией активации . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.
Относительная вязкость
В технических науках часто пользуются понятием относительной вязкости, под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:
где μ — динамическая вязкость раствора; μ0 — динамическая вязкость растворителя.
Вязкость некоторых веществ
Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.
Вязкость воздуха
Вязкость воздуха зависит, в основном, от температуры. При 15.0 °C вязкость воздуха составляет 1.78·10−5 кг/(м·с), 17.8 мкПа.с или 1.78·10−5 Па.с.. Можно найти вязкость воздуха как функцию температуры с помощью Программы расчёта вязкостей газов
Вязкость воды
Динамическая вязкость воды составляет 8,90 × 10−4 Па·с при температуре около 25 °C.
Как функция температуры T (K): (Па·с) = A × 10B/(T−C)
где A=2.414 × 10−5 Па·с; B = 247.8 K ; и C = 140 K.Значения вязкостей жидкой воды при разных температурах вплоть до точки кипения приведена ниже.
Температура [°C]
Вязкость [мПа·с]
10 1.308 20 1.002 30 0.7978 40 0.6531 50 0.5471 60 0.4668 70 0.4044 80 0.3550 90 0.3150 100 0.2822 Динамическая вязкость разных веществ
Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:
Вязкость отдельных видов газов при давлении 100 кПа, [мкПа·с] Газ при 0 °C (273 K) при 27 °C (300 K) воздух 17.4 18.6 водород 8.4 9.0 гелий 20.0 аргон 22.9 ксенон 21.2 23.2 углекислый газ 15.0 метан 11.2 этан 9.5 Вязкость жидкостей при 25 °C Жидкость: Вязкость [Па·с]
Вязкость [мПа·с]
ацетон 3.06·10−4 0.306 бензол 6.04·10−4 0.604 кровь (при 37 °C) (3-4)·10−3 3-4 касторовое масло 0.985 985 кукурузный сироп 1.3806 1380.6 этиловый спирт 1.074·10−3 1.074 этиленгликоль 1.61·10−2 16.1 глицерин (при 20 °C) 1.49 1490 мазут 2.022 2022 ртуть 1.526·10−3 1.526 метиловый спирт 5.44·10−4 0.544 моторное масло SAE 10 (при 20 °C) 0.065 65 моторное масло SAE 40 (при 20 °C) 0.319 319 нитробензол 1.863·10−3 1.863 жидкий азот (при 77K) 1.58·10−4 0.158 пропанол 1.945·10−3 1.945 оливковое масло .081 81 серная кислота 2.42·10−2 24.2 вода 8.94·10−4 0.894 Примечания
- ↑ Alexander J. Smits, Jean-Paul Dussauge Turbulent shear layers in supersonic flow, Birkhäuser, 2006, ISBN 0-387-26140-0 p. 46
- ↑ data constants for sutherland’s formula
- ↑ Viscosity of liquids and gases
- ↑ Я. И. Френкель. Кинетическая теория жидкостей. Ленинград, Наука, 1975., стр. 226
См. также
- Уравнения Навье — Стокса
- Закон вязкого трения Ньютона
- Течение Пуазёйля
- Степенной закон вязкости жидкостей
- Тиксотропия — свойство, при котором при постоянной скорости деформации напряжение сдвига уменьшается во времени (а значит, и уменьшается вязкость).
- Реопексия — свойство, обратное тиксотропии.
- Псевдопластичность
- Текучесть
- Вязкоупругость
- Вязкопластичность
- Индекс вязкости
Ссылки
- Аринштейн А., Сравнительный вискозиметр Жуковского Квант, № 9, 1983.
- Измерение вязкости нефтепродуктов — обзор методов и единиц измерения вязкости.
- R.H. Doremus. J. Appl. Phys., 92, 7619-7629 (2002).
- M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).
- M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
- Булкин П. С. Попова И. И.,Общий физический практикум. Молекулярная физика
- Статья в энциклопедии Химик.ру
- Седов Л. И. Механика сплошной среды, том 1
Литература
Категории:- Явления переноса
- Коллоидная химия
- Свойства материалов
- Вискозиметрия
- Физические величины
Wikimedia Foundation. 2010.