Tan

Tan
Рис. 1
Графики тригонометрических функций: синуса, косинуса, тангенса, секанса, косеканса, котангенса

Тригонометрические функции — вид элементарных функций. Обычно к ним относят синус (sin x), косинус (cos x), тангенс (tg x), котангенс (ctg x), секанс (sec x) и косеканс (cosec x), последняя пара функций в настоящее время сравнительно малоупотребительна (про ещё менее употребляемые функции см. здесь). В англоязычной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x. Обычно тригонометрические функции определяются геометрически, но можно определить их аналитически через суммы рядов или как решения некоторых дифференциальных уравнений, что позволяет расширить область определения этих функций на комплексные числа.

Содержание

Способы определения

Геометрическое определение

Рис. 2
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически. Пусть дана декартова система координат на плоскости и построена окружность радиуса R с центром в начале координат O. Будем измерять углы как повороты от положительного направления оси абсцисс до луча OB. Направление против часовой стрелки считается положительным, по часовой стрелке отрицательным. Абсциссу точки В обозначим xB, ординату обозначим yB (см. рисунок.)

  • Синусом называется отношение \sin\alpha=\frac{y_B}{R}
  • Косинусом называется отношение \cos\alpha=\frac{x_B}{R}
  • Тангенс определяется как \operatorname{tg}\alpha=\frac{\sin\alpha}{\cos\alpha}
  • Котангенс определяется как \operatorname{ctg}\alpha=\frac{\cos\alpha}{\sin\alpha}
  • Секанс определяется как \sec\alpha=\frac{1}{\cos\alpha}
  • Косеканс определяется как \operatorname{cosec}\alpha=\frac{1}{\sin\alpha}
Рис. 3.
Тригонометрические функции угла α в тригонометрической окружности с радиусом, равным единице.

Ясно, что значения тригонометрических функций не зависят от величины радиуса окружности R в силу свойств подобных фигур. Часто этот радиус принимают равным величине единичного отрезка, тогда синус равен просто ординате yB, а косинус — абсциссе xB. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

Если α — действительное число, то синусом α в математическом анализе называется синус угла, радианная мера которого равна α, аналогично для прочих тригонометрических функций.


Определение тригонометрических функций для острых углов

Рис. 4.
Тригонометрические функции острого угла

Во многих учебниках элементарной геометрии до настоящего времени тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB — треугольник с углом α. Тогда:

  • Синусом α называется отношение AB/OB (противолежащего катета к гипотенузе)
  • Косинусом α называется отношение ОА/OB (прилежащего катета к гипотенузе)
  • Тангенсом α называется отношение AB/OA (отношение противолежащего катета к прилежащему)
  • Котангенсом α называется отношение ОА/AB (отношение прилежащего катета к противолежащему)
  • Секансом α называется отношение ОB/OA (гипотенузы к прилежащему катету)
  • Косекансом α называется отношение ОB/AB (гипотенузы к противолежащему катету)

Построив систему координат с началом в точке O, направлением оси абсцисс вдоль OA и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее. Данное определение имеет некоторое педагогическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач про тупоугольные треугольники (см. Теорема синусов, Теорема косинусов).

Определение тригонометрических функций как решений дифференциальных уравнений

Функции косинус и синус можно определить как чётное (косинус) и нечётное (синус) решение дифференциального уравнения

\frac{d^2}{d\varphi^2}R(\varphi) = - R(\varphi),

с начальными условиями cos(0) = sin'(0) = 1, то есть как функций одной переменной, вторая производная которых равна самой функции, взятой со знаком минус:

\ \cos '' x = - \cos x,
\ \sin '' x = - \sin x.

Определение тригонометрических функций как решений функциональных уравнений

Функции косинус и синус можно определить как непрерывные решения (f и g соответственно) системы функциональных уравнений: \left\{
\begin{array}{rcl}
f(x+y)&=&f(x)f(y)-g(x)g(y)\\
g(x+y)&=&g(x)f(y)+f(x)g(y)
\end{array}
\right.

Определение тригонометрических функций через ряды

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде суммы степенны́х рядов:

\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}+\cdots = \sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)!},
\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}+\cdots = \sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)!}.

Пользуясь этими формулами, а также уравнениями \operatorname{tg}\,x=\frac{\sin x}{\cos x}, \operatorname{ctg}\,x=\frac{\cos x}{\sin x}, \sec x=\frac{1}{\cos x} и \operatorname{cosec}\,x=\frac{1}{\sin x}, можно найти разложения в ряд Тейлора и других тригонометрических функций:

\operatorname{tg}\,x=x+\frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \cdots = \sum_{n=1}^\infty\frac{(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}x^{2n-1} \quad \left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right), \quad где Bn — числа Бернулли.
\sec x=1+\frac{x^2}{2}+\frac{5x^4}{24}+\frac{61x^6}{720}+\frac{277x^8}{8064}+\cdots = \sum_{n=0}^\infty\frac{(-1)^nE_{2n}}{(2n)!}x^{2n}, где En — числа Эйлера.

Значения тригонометрических функций для некоторых углов

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице.

Значения косинуса и синуса на окружности.
 \alpha \,\! 0°(0 рад) 30° (π/6) 45° (π/4) 60° (π/3) 90° (π/2) 180° (π) 270° (3π/2) 360° (2π)
 \sin \alpha \,\! {0} \,\!  \frac{1}{2}\,\!  \frac{ \sqrt{2}}{2}\,\!  \frac{ \sqrt{3}}{2}\,\! {1}\,\! {0}\,\! {-1}\,\! {0}\,\!
 \cos \alpha \,\! {1} \,\!   \frac{ \sqrt{3}}{2}\,\!  \frac{ \sqrt{2}}{2}\,\!  \frac{1}{2}\,\! {0}\,\! {-1}\,\! {0}\,\! {1}\,\!


 \mathop{\mathrm{tg}}\, \alpha \,\! {0} \,\!  \frac{1}{ \sqrt{3}}\,\!  {1}\,\!   \sqrt{3}\,\!   \varnothing \,\! {0}\,\!   \varnothing \,\! {0}\,\!
 \mathop{\mathrm{ctg}}\, \alpha \,\!   \varnothing \,\!   \sqrt{3}\,\! {1} \,\!  \frac{1}{ \sqrt{3}}\,\!  {0}\,\!   \varnothing \,\! {0}\,\!   \varnothing \,\!
 \sec \alpha \,\! {1} \,\!   \frac{2}{ \sqrt{3}}\,\!   \sqrt{2}\,\!  {2}\,\!   \varnothing \,\! {-1}\,\!   \varnothing \,\!  {1}\,\!
 \operatorname{cosec}\, \alpha \,\!   \varnothing \,\!  {2}\,\!   \sqrt{2}\,\!  \frac{2}{ \sqrt{3}}\,\! {1}\,\!   \varnothing \,\! {-1}\,\!   \varnothing \,\!

Значения тригонометрических функций нестандартных углов

\sin \frac{\pi}{10} = \sin 18^\circ = \frac{\sqrt{5}-1}{4}

\operatorname{tg} \frac{\pi}{120}= \operatorname{tg} 1.5^\circ =\sqrt{\frac{8-\sqrt{2(2-\sqrt{3})(3-\sqrt{5})} - \sqrt{
2(2+\sqrt{3})(5+\sqrt{5})}}{8+\sqrt{2(2-\sqrt{3})(3-\sqrt{5})}+\sqrt{2(2+\sqrt{3})(5+\sqrt{5})}
}}

\cos \frac{\pi}{240}=\frac{1}{16}\left(\sqrt{2-\sqrt{2+\sqrt{2}}} \left(\sqrt{2(5+\sqrt{5})}+\sqrt{3}-\sqrt{15} \right) + \sqrt{2+\sqrt{2+\sqrt{2}}} \left (\sqrt{6(5+\sqrt{5})}+\sqrt{5} - 1 \right) \right)

\cos \frac{\pi}{17} = \frac{1}{8}
\sqrt{2 \left(
2\sqrt{\sqrt{\frac{17(17-\sqrt{17})}{2}}-\sqrt{\frac{17-\sqrt{17}}{2}}-4\sqrt{2(17+\sqrt{17})} + 3\sqrt{17}+17}+\sqrt{2(17-\sqrt{17})}+\sqrt{17}+15 \right)}

Свойства тригонометрических функций

Простейшие тождества

Так как синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

 \sin^2 \alpha + \cos^2 \alpha = 1. \qquad \qquad \,

Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:

 1 + \mathop{\mathrm{tg}}\,^2 \alpha = \frac{1}{ \cos^2 \alpha}, \qquad \qquad  \,
 1 + \mathop{\mathrm{ctg}}\,^2 \alpha = \frac{1}{ \sin^2 \alpha}. \qquad \qquad  \,

Чётность

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

 \sin \left( - \alpha \right)  = - \sin \alpha \,,
 \cos \left( - \alpha \right)  =  \cos \alpha \,,
 \mathop{\mathrm{tg}}\, \left( - \alpha \right)  = - \mathop{\mathrm{tg}}\, \alpha \,,
 \mathop{\mathrm{ctg}}\, \left( - \alpha \right)  = - \mathop{\mathrm{ctg}}\, \alpha \,,
 \sec \left( - \alpha \right)  =  \sec \alpha \,,
 \mathop{\mathrm{cosec}}\, \left( - \alpha \right)  = - \mathop{\mathrm{cosec}}\, \alpha \,.

Периодичность

Функции y = sin α, y = cos α, y = sec α, y = cosec α — периодические с периодом . Функции: y = tg α, y = ctg α — c периодом π

Формулы приведения

 f ( n \pi + \alpha )  = \pm  f (\alpha)
 f ( n \pi - \alpha )  = \pm  f (\alpha)
 f (  \frac{(2n+1) \pi}{2} + \alpha)  = \pm  g (\alpha)
 f (  \frac{(2n+1) \pi}{2} - \alpha)  = \pm  g (\alpha)

Здесь f — любая тригонометрическая функция, g — соответствующая ей другая функция из пары (то есть косинус для синуса, синус для косинуса и аналогично для остальных функций). Нужный знак в правой части равенства определяется следующим образом: предположим что угол α находится в первой четверти, тогда определяем знаки значений функций в левой и правой части равенства и в случае их несовпадения перед правой частью пишем знак -, например:

 \cos \left(  \frac{ \pi}{2} - \alpha \right)  =   \sin \alpha\,,

Формулы сложения

 \sin(\alpha \pm \beta)= \sin(\alpha) \cos(\beta) \pm \cos(\alpha) \sin( \beta)
 \cos(\alpha \pm \beta)= \cos( \alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)

Другие тригонометрические тождества.

Однопараметрическое представление

Все тригонометрические функции можно выразить через тангенс половинного угла.

\sin x = \frac{\sin x}{1} = \frac{2\sin \frac{x}{2}\cos \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} =\frac{2\operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}

\cos x = \frac{\cos x}{1} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} =\frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}

\operatorname{tg}~x = \frac{\sin x}{\cos x} = \frac{2\operatorname{tg} \frac{x}{2}}{1 - \operatorname{tg}^2 \frac{x}{2}}

\operatorname{ctg}~x = \frac{\cos x}{\sin x} = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{2\operatorname{tg} \frac{x}{2}}

\sec x = \frac{1}{\cos x} = \frac{1 + \operatorname{tg}^2 \frac{x}{2}}{1 - \operatorname{tg}^2 \frac{x}{2}}

\operatorname{cosec}~x = \frac{1}{\sin x} = \frac{1 + \operatorname{tg}^2 \frac{x}{2}} {2\operatorname{tg} \frac{x}{2}}

Производные и интегралы

Все тригонометрические функции непрерывно дифференцируемы на всей области определения:

( \sin x )' = \cos x \,,

( \cos x )' = -\sin x \,,

( \mathop{\mathrm{tg}}\, x )' = \frac{1}{\cos ^2 x},

( \mathop{\mathrm{ctg}}\, x )' = -\frac{1}{\sin ^2 x},

( \sec x)' = \frac{\sin x}{\cos ^2 x},

( \operatorname{cosec}~x)' = -\frac{\cos x}{\sin ^2 x}.

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом:

\int\sin x\, dx = -\cos x + C \,,

\int\cos x\, dx = \sin x + C \,,

\int\mathop{\mathrm{tg}}\, x\, dx = -\ln \left| \cos x\right| + C \,,

\int\mathop{\mathrm{ctg}}\, x\, dx = \ln \left| \sin x \right| + C \,,

\int\sec x\, dx=\ln \Big|\operatorname{tg}~ (\frac {\pi}{4}+\frac{x}{2}) \Big|+ C,,

\int \operatorname{cosec}~ x\, dx=\ln \Big|\operatorname{tg}~ (\frac{x}{2}) \Big|+ C.

См. также Список интегралов от тригонометрических функций

История

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива»), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение.

Современное обозначение синуса sin и косинуса cos введено Леонардом Эйлером в XVIII веке.

Термины «тангенс» (от лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке (1561—1656) в его книге «Геометрия круглого» (Geometria rotundi, 1583)

Сам термин тригонометрические функции введён Клюгелем в 1770.

См. также

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Tan" в других словарях:

  • TAN — als Abkürzung steht für: Transaktionsnummer, ein Begriff im elektronischen Bankgeschäft Tansania, nach dem Ländercode des olympischen Komitees Tierrechts Aktion Nord (früher Tierschutz Aktiv Nord), eine Organisation englisch total acid… …   Deutsch Wikipedia

  • tan — [ tɑ̃ ] n. m. • XIIIe; p. ê. gaul. °tann « chêne »; cf. bret. tann ♦ Écorce de chêne pulvérisée utilisée pour la préparation des cuirs (⇒ tanin, tanner). Moulin à tan. ⊗ HOM. Tant, taon, temps. ● tan Symbole de la fonction tangente. ● tan nom… …   Encyclopédie Universelle

  • tan — tañ interj. 1. staigiam sudavimui žymėti: Tas Jurgis tañ par ausį! Slm. Tañ jai galvon i ažumuš LTR(Prng). Tañ lazda per koją! Ad. Tuo (ta) lenta tañ tañ per sąsparą Ad. 2. dan, dzin (kartojant nusakomas skambinimas): Tañ tañ vienu šonu… …   Dictionary of the Lithuanian Language

  • Tan — Tan, n. [F. tan, perhaps fr. Armor. tann an oak, oak bar; or of Teutonic origin; cf. G. tanne a fir, OHG. tanna a fir, oak, MHG. tan a forest. Cf. {Tawny}.] 1. The bark of the oak, and some other trees, bruised and broken by a mill, for tanning… …   The Collaborative International Dictionary of English

  • Tan — can mean several things:* Tan (color), the color * Tangent, a mathematical trigonometric function tan(x) * Tanning, the process of making leather from hides * Sun tanning, the darkening of skin in response to ultraviolet light * Sunless tanning,… …   Wikipedia

  • Tan Le — (birth year: 1978) is an Australian telecommunications entrepreneur, businesswoman and the 1998 Young Australian of the Year. Born in Vietnam, Tan migrated to Australia as refugee with her family in 1982. [… …   Wikipedia

  • tan — (apócope de tanto) adverbio de cantidad 1. Intensifica el significado del adjetivo, adverbio o locución adverbial delante de la que va. Observaciones: No se usa delante de algunos comparativos, como mejor o peor: No seas tan orgulloso. No… …   Diccionario Salamanca de la Lengua Española

  • tan. — «tan», adjective, noun, verb, tanned, tan|ning. –adj. 1. light yellowish brown in color: »He wore tan shoes. 2. having to do with tanning. 3. used in tanning. –n. 1 …   Useful english dictionary

  • Tan Yu — (1927 2002) was a Filipino philanthropist and real estate entrepreneur of Chinese orgin. He was once the richest in the Philippines as well as being among the 10 wealthiest in the planet where he had a networth of about $7 Billion. [cite web… …   Wikipedia

  • Tan — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. {{{image}}}   Sigles d une seule lettre   Sigles de deux lettres > Sigles de trois lettres …   Wikipédia en Français

  • tan — (tan) s. m. Écorce pulvérisée du chêne, du sumac, du châtaignier, etc. qu on emploie à tanner les peaux. Moulin à tan. •   On pourrait éviter de renouveler le tan, en l arrosant avec de l eau chargée de tannin, lorsqu il serait épuisé de ce… …   Dictionnaire de la Langue Française d'Émile Littré


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»