Частная теория относительности

Частная теория относительности

Специа́льная тео́рия относи́тельности (СТО) (англ. special theory of relativity; ча́стная тео́рия относи́тельности; релятивистская механика) — теория, описывающая движение, законы механики и пространственно-временные отношения, определяющие их, при скоростях движения, близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей образует общую теорию относительности.

Отклонения в протекании физических процессов, описываемые теорией относительности, от эффектов, предсказываемых классической механикой, называют релятивистскими эффектами, скорости, при которых такие эффекты становятся существенными — релятивистскими скоростями.

Содержание

Создание СТО

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами.

Другим следствием развития электродинамики стал переход от ньютоновской концепции дальнодействия, согласно которой взаимодействующие на расстоянии тела воздействуют друг на друга через пустоту, причём взаимодействие осуществляется с бесконечной скоростью, то есть «мгновенно» к концепции близкодействия, предложенной Майклом Фарадеем, в которой взаимодействие передаётся с помощью промежуточных агентов — полей, заполняющих пространство — и при этом встал вопрос о скоростях распространения как взаимодействий, переносимых полями, так и самих полей. Скорость распространения электромагнитного поля в пустоте вытекала из уравнений Максвелла и оказалась постоянной и равной скорости света.

Однако в связи с этим встал вопрос — относительно чего постоянна скорость света? В максвелловой электродинамике скорость распространения электромагнитных волн оказалась не зависящей от скоростей движения как источника этих волн, так и наблюдателя. Аналогичной оказалась и ситуация с магнитостатическими решениями, вытекающими из уравнений Максвелла: статические магнитные поля и силы Лоренца, действующие на движущиеся в магнитных полях заряды, зависят от скоростей зарядов по отношению к наблюдателю, то есть уравнения Максвелла оказались неинвариантными относительно принципа относительности и преобразований Галилея — что противоречило ньютоновской концепции абсолютного пространства классической механики.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре и А. Эйнштейна, см. ниже исторический очерк. Экспериментальной основой для создания СТО послужил опыт Майкельсона, который дал результат измерения, неожиданный для классической физики своего времени: независимость скорости света от системы отсчёта. Попытка проинтерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений не только электромагнетизма, но и всей механики вообще, и привела к созданию релятивистских физических теорий.

Постулаты Эйнштейна

СТО полностью выводится на физическом уровне строгости из трёх постулатов (предположений):

  1. Справедлив принцип относительности Эйнштейна — расширение принципа относительности Галилея.
  2. Скорость света не зависит от скорости движения источника во всех инерциальных системах отсчёта.
  3. Пространство и время однородны, пространство является изотропным.

Формулировка второго постулата может быть шире: «Скорость света постоянна во всех инерциальных системах отсчёта», но для вывода СТО достаточно его исходной формулировки Эйнштейном, записанной выше. Приписывание постулатов Эйнштейну правомерно в той степени, что до его работы эти уже сформулированные отдельно друг от друга (в частности, А. Пуанкаре) утверждения в совокупности явным образом никем не рассматривались.

Иногда в постулаты СТО также добавляют условие синхронизации часов по А. Эйнштейну, но принципиального значения оно не имеет: при других условиях синхронизации лишь усложняется математическое описание экспериментальной ситуации без изменения предсказываемых и измеряемых эффектов (см. по этому поводу работы в списке литературы).

Тем не менее, опора на достижения экспериментальной физики позволяет утверждать, что в пределах своей области применимости — при пренебрежении эффектами гравитационного взаимодействия тел — СТО является справедливой с очень высокой степенью точности (до 10−12 и выше) (см. список литературы). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать».

Сущность СТО

Следствием постулатов СТО являются преобразования Лоренца, заменяющие собой преобразования Галилея для нерелятивистского, «классического» движения. Эти преобразования связывают между собой координаты и времена одних и тех же событий, наблюдаемых из различных инерциальных систем отсчёта.

При движении с околосветовыми скоростями видоизменяются также и законы динамики. Так, можно вывести, что второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме того, можно показать, что и выражение для импульса и кинетической энергии тела уже имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является безусловно верной теорией в своей области применимости.

Четырёхмерный континуум — пространство-время

С математической точки зрения, непривычные свойства СТО можно интерпретировать как результат того, что время и пространство не являются независимыми понятиями, а образуют пространство-время Минковского, которое является псевдоевклидовым пространством. Вращения базиса в этом четырёхмерном пространстве-времени, смешивающие временную и пространственные координаты 4-векторов, выглядят для нас как переход в движущуюся систему отсчета и похожи на вращения в обычном трёхмерном пространстве. При этом естественно изменяются проекции четырёхмерных интервалов между определёнными событиями на временную и пространственные оси системы отсчёта, что и порождает релятивистские эффекты изменения временных и пространственных интервалов. Именно инвариантная структура этого пространства, задаваемая постулатами СТО, не меняется при переходах от одного условия синхронизации часов к другому, и гарантирует независимость результатов экспериментов от принятого условия.

Аналог расстояния между событиями в пространстве Минковского, называемый интервалом, при введении наиболее простых координат, аналогичных декартовым координатам трёхмерного пространства, даётся выражением

 s^2 = c^2 \Delta t^2_{} - \Delta x^2 - \Delta y^2 - \Delta z^2 = \eta_{ab} \Delta x^a \Delta x^b,
 \left\{x^0,x^1,x^2,x^3\right\}=\left\{ct,x,y,z\right\},
 
\eta_{ab}=\mathrm{diag}\left\{1,-1,-1,-1\right\}.

Обратите внимание: «квадрат расстояния» между двумя разными событиями может быть не только положительным, но и отрицательным и даже нулём. Именно незнакоопределённость метрики определяет свойства пространства-времени, делая его геометрию псевдоевклидовой (см. напр. световой конус).

Отношения теории относительности с другими физическими понятиями

Гравитация

Для описания гравитации разработано особое расширение теории относительности, в котором допускается кривизна пространства-времени. Тем не менее, динамика даже в рамках СТО может включать гравитационное взаимодействие, пока потенциал гравитационного поля много меньше c2.

Следует также заметить, что специальная теория относительности перестает работать в масштабах всей Вселенной, требуя замены на ОТО.

Классическая механика

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики. Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тела. Надо отметить, что даже в классической физике предполагается, что механическое воздействие на твёрдое тело распространяется со скоростью звука, а отнюдь не с бесконечной (как должно быть в воображаемой абсолютно твёрдой среде).

Квантовая механика

Специальная теория относительности (в отличие от общей) полностью совместима с квантовой механикой. Их синтезом является квантовая теория поля. Более того, такое квантовомеханическое явление как спин без привлечения теории относительности не имеет разумного объяснения. Однако, обе теории вполне независимы друг от друга. Возможно построение как квантовой механики, основанной на нерелятивистском принципе относительности Галилея (см. уравнение Шрёдингера), так и теорий на основе СТО, полностью игнорирующих квантовые эффекты.

Развитие квантовой теории всё ещё продолжается, и многие физики считают, что будущая полная теория ответит на все вопросы, имеющие физический смысл, и даст в пределах как СТО в сочетании с квантовой теорией поля, так и ОТО. Скорее всего СТО ожидает такая же судьба, как и механику Ньютона — будут точно очерчены пределы её применимости. В то же время такая максимально общая теория пока является очень отдалённой перспективой.

Эффекты СТО

Пусть система отсчёта K' движется со скоростью V относительно системы отсчёта K0, соответственно, штрихованные величины относятся к K', а величины с индексом 0 — к K0. К наиболее распространённым эффектам СТО, также называемым релятивистскими эффектами, относят:

Замедление времени

Время в движущейся системе отсчёта течёт медленнее:

 dt' = dt_0 \sqrt{1 - (v/c)^2}\

С этим эффектом связан так называемый парадокс близнецов.

Сокращение линейных размеров

Линейные размеры тел в движущейся системе отсчёта сокращаются:

 l' = l_0 \sqrt{1 - (v/c)^2}\ , для длины.
 V' = V_0 \sqrt{1 - (v/c)^2}\ , для объёма.

Такое сокращение размеров ещё называют лоренцевым сокращением.

О Релятивистской массе

Релятивистская масса движущегося объекта больше массы покоя:

 m' = \frac {m} {\sqrt{1 - (v/c)^2}} \

Однако, в современной физической литературе по СТО m — масса частицы (инвариантная масса) не зависит от скорости, являясь инвариантом относительно преобразований Лоренца, и является величиной неаддитивной. В данной формуле речь идёт о так называемой «релятивистской массе», которая возрастает с увеличением скорости. «Утяжеление» следует понимать лишь условно. В современной физической литературе понятие «релятивистской массы» не используется, хотя встречается в ранних работах по теории относительности.

Подробнее смотри статью Окуня Л. Б. "Понятие массы" в УФН, 1989, Выпуск 7. стр.511-530. http://www.ufn.ru/ufn89/ufn89_7/Russian/r897f.pdf

Исторический очерк

В 1728 году английский астроном Брэдли открыл аберрацию света: все звёзды описывают на небосводе малые круги с периодом в один год. С точки зрения эфирной теории света это означало, что эфир неподвижен, и его кажущееся смещение (при движении Земли вокруг Солнца) по принципу суперпозиции отклоняет изображения звёзд. Френель, однако, допускал, что внутри вещества эфир частично увлекается. Эта точка зрения, казалось, нашла подтверждение в опытах Физо, который обнаружил, что скорость света в воде зависит от направления её движения: вдоль течения скорость света больше, чем против течения.

Максвелл в 1868 году предложил схему решающего опыта, который после изобретения интерферометра смог осуществить в 1881 году американский физик Майкельсон. Позже Майкельсон и Эдуард Морли повторили опыт несколько раз с возрастающей точностью, но результат был неизменно отрицательным — «эфирного ветра» не существовало.

В 1892 году Лоренц и (независимо от него) Джордж Фитцджеральд предположили, что эфир неподвижен, а длина любого тела сокращается в направлении его движения. Одновременно изучался вопрос, при каких преобразованиях координат уравнения Максвелла инвариантны. Правильные формулы впервые выписали Лармор (1900) и Пуанкаре (1905), последний доказал их групповые свойства и предложил назвать преобразованиями Лоренца.

Пуанкаре также дал обобщённую формулировку принципа относительности, охватывающего и электродинамику. Тем не менее он продолжал признавать эфир, хотя придерживался мнения, что его никогда не удастся обнаружить — см. доклад Пуанкаре на физическом конгрессе, 1900 год[1]. В этом же докладе Пуанкаре впервые высказывает мысль, что одновременность событий не абсолютна, а представляет собой условное соглашение («конвенцию»). Было высказано также предположение о предельности скорости света.

Под влиянием критики Пуанкаре Лоренц в 1904 году предложил новый вариант своей теории. В ней он предположил, что при больших скоростях механика Ньютона нуждается в поправках. В 1905 году Пуанкаре далеко развил эти идеи в статье «О динамике электрона». Предварительный вариант статьи появился в 1895 году в Comptes Rendus, развёрнутый был закончен в июле 1905 года, опубликован в январе 1906 года, почему-то в малоизвестном итальянском математическом журнале.

В этой итоговой статье формулируется всеобщий принцип относительности с преобразованиями Лоренца для всех явлений (не только электромагнитных). Пуанкаре нашёл выражение для четырёхмерного интервала как инварианта преобразований Лоренца: r2 + (ict)2. Он даже предложил нечто вроде релятивистского обобщения теории гравитации; в его теории тяготение распространялось в эфире со скоростью света.

Таким образом, в начале XX века существовали две несовместимые кинематики: классическая, с преобразованиями Галилея, и электромагнитная, с преобразованиями Лоренца. Эйнштейн, размышляя на эти темы, предположил, что первая есть приближённый случай второй для малых скоростей, а то, что считалось свойствами эфира, есть на деле проявление объективных свойств пространства и времени.[2] Эйнштейн пришёл к выводу, что нелепо привлекать понятие эфира только для того, чтобы доказать невозможность его наблюдения. В своей основополагающей статье «К электродинамике движущихся сред» (1905) он предложил два постулата: специальный принцип относительности и постоянство скорости света; из них без труда выводятся лоренцево сокращение, формулы преобразования Лоренца, относительность одновременности, ненужность эфира, новая формула суммирования скоростей, возрастание инерции со скоростью и т. д. В последующих работах появилась и формула E0 = mc2 — масса определяется энергией покоя.

Часть учёных сразу приняли СТО: Планк (1906) и сам Эйнштейн (1907) построили релятивистскую динамику и термодинамику. Минковский в 1907 году представил математическую модель кинематики СТО, в которой преобразования Лоренца вытекают из геометрии четырёхмерного псевдоевклидова пространства: в пространства Минковского лоренцевы преобразования являются преобразовании при поворотах координат.

Были, однако, и критики новых концепций. Они указывали на то, что теория относительности не предсказывает новых фактов, которые можно проверить экспериментально, и ничем не лучше теории Лоренца. Появились попытки найти в СТО внутренние противоречия. Концепцию эфира продолжали поддерживать Дж. Дж. Томсон, Ленард, Лодж и другие известные физики. Сам Лоренц прекратил критику СТО только к концу жизни; свои разногласия с теорией относительности он сам сформулировал так:[3]

Основная причина, по которой я не смог предложить теории относительности, заключается в том, что я придерживался представления, будто лишь переменная t может считаться истинным временем, а предложенное мной местное время t' должно рассматриваться только в качестве вспомогательной математической величины.

С 1911 года Эйнштейн разрабатывал общую теорию относительности (ОТО), включающую гравитацию, на основе принципа эквивалентности, которую завершил в 1916 году.

В 1930-е годы был проведен ряд экспериментов для проверки главного постулата СТО — постоянства скорости света. Некоторые измерения (Миллер и др.) поставили его под сомнение, однако точные эксперименты Мак-Кеннеди подтвердили этот факт.[4] Постепенно накапливались опытные подтверждения СТО. На ней основаны квантовая теория поля, теория ускорителей, она учитывается при проектировании и работе (здесь оказались нужны даже поправки общей теории относительности) и др.

Ряд экспериментов по проверке эффектов СТО и ОТО был проведен в конце XX века; их результаты находятся в полном согласии с теорией. Тем не менее исследования с целью найти границы применимости теории относительности продолжаются.[5]

Комментарии

Так же, как и в случае квантовой механики, многие предсказания теории относительности противоречат интуиции, кажутся невероятными и невозможными. Это, однако, не означает, что теория относительности неверна. В действительности, то, как мы видим (либо хотим видеть) окружающий нас мир и то, каким он является на самом деле, может сильно различаться. Уже больше века учёные всего мира пробуют опровергнуть СТО. Ни одна из этих попыток не смогла найти ни малейшего изъяна в теории. О том, что теория верна математически, свидетельствует строгая математическая форма и чёткость всех формулировок.

О том, что СТО действительно описывает наш мир, свидетельствует огромный экспериментальный опыт. Многие следствия этой теории используются на практике. Очевидно, что все попытки «опровергнуть СТО» обречены на провал потому, что сама теория опирается на три постулата Галилея (которые несколько расширены), на основе которых построена ньютонова механика, а также на дополнительный постулат о постоянстве скорости света во всех системах отсчета. Все четыре не вызывают какого-либо сомнения в пределах максимальной точности современных измерений: лучше 10 − 12, а в некоторых аспектах — до 10 − 15. Более того, точность их проверки является настолько высокой, что постоянство скорости света положено в основание определения метра — единицы длины, в результате чего скорость света становится константой автоматически, если измерения вести в соответствии с метрологическими требованиями.

Литература


Работы основоположников

  • Принцип относительности. Сб. работ по специальной теории относительности. М.: Атомиздат, 1973.
  • Г. А. Лоренц. Интерференционный опыт Майкельсона. Из книги "Versucheiner Theoriederelektrischenundoptischen Erscheinungeninbewegten Korpern. Leiden, 1895, параграфы 89…92.
  • А. Пуанкаре. Измерение времени. «Revuede Metaphysiqueetde Morale», 1898, t. 6, p. 1…13.
  • А. Пуанкаре. Оптические явления в движущихся телах. ElectriciteetOptique, G. CarreetC. Naud, Paris, 1901, p. 535…536.
  • А. Пуанкаре. О принципе относительности пространства и движения. Главы 5…7 из книги «Наука и гипотеза»(H. Poinrare. Scienceand Hypothesis. Paris, 1902.)
  • А. Пуанкаре. Настоящее и будущее математической физики. Доклад, напечатанный в журнале «Bulletindes Sciences Mathematiques», 1904, v. 28, ser. 2, p. 302.
  • Г. А. Лоренц.Электромагнитные явления в системе движущейся с любой скоростью, меньшей скорости света. Proc Acad., Amsterdam, 1904, v 6, p. 809.
  • А. Эйнштейн. К электродинамике движущихся тел. Ann. d. Phys.,1905 (рукопись поступила 30 июня 1905 г.), b. 17, s. 89.
  • Эйнштейн А. Собрание научных трудов в четырех томах. Том 1. Работы по теории относительности 1905-1920. М.: Наука, 1965.
  • А. Пуанкаре. О динамике электрона. Rendicontidel Circolo Matematicodi Palermo, 1906 (рукопись поступила 23 июля 1905 г.) v. XXI, p. 129 Однако, краткое сообщение о полученных результатах было сделано Пуанкаре 5 июня 1905 г. и под этой же датой напечатано в докладах Французской Академии наук. [6]

Доп. литература

Разное

Ссылки

Примечания

  1. Пуанкаре Анри. О науке. М. Наука. Главная редакция физико-математической литературы. 1983 г., с.524.
  2. Пуанкаре рассматривал свою математическую модель, формально совпадающую с эйнштейновской, как отражение не физической реальности, а субъективных (конвенциональных) понятий физиков; см. подробнее о различии их подходов в: Роль Пуанкаре в создании теории относительности.
  3. * Пайс А. Научная деятельность и жизнь Альберта Эйнштейна. М.: Наука, 1989, стр. 161.
  4. См. Повторения опыта Майкельсона
  5. См., например, Эфир возвращается?
  6. А.А.Тяпкин «Об истории возникновения „теории относительности“»
Разделы физики
Экспериментальная физика | Теоретическая физика
Механика | Специальная теория относительности | Общая теория относительности | Космология | Молекулярная физика | Термодинамика | Статистическая физика | Физическая кинетика | Электродинамика | Оптика | Акустика | Физика плазмы | Физика конденсированного состояния | Атомная физика | Квантовая физика | Квантовая механика | Квантовая теория поля | Ядерная физика | Физика элементарных частиц | Теория колебаний | Нелинейная динамика | Метрология | Астрофизика | Геофизика | Биофизика | Радиофизика | Материаловедение | Физика атмосферы | Химическая физика | Физическая химия | Математическая физика


Wikimedia Foundation. 2010.

Нужна помощь с курсовой?

Полезное


Смотреть что такое "Частная теория относительности" в других словарях:

  • ЧАСТНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ — специальная теория относительности; (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • ЧАСТНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ — (специальная теория относительности) см. Относительности теория …   Большой Энциклопедический словарь

  • частная теория относительности — (специальная теория относительности), см. Относительности теория. * * * ЧАСТНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ ЧАСТНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (специальная теория относительности), см. Относительности теория (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ) …   Энциклопедический словарь

  • ЧАСТНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ — (специальная теория относительности), см. Относительности теория …   Естествознание. Энциклопедический словарь

  • Теория относительности — Альберт Эйнштейн  один из авторов теории относительности (1921 год) Теория относительности  термин, введённый в 1906 году Максом Планком с целью показать, ка …   Википедия

  • Специальная теория относительности —         частная теория относительности, см. Относительности теория …   Большая советская энциклопедия

  • СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ — (частная теория относительности), см. Относительности теория …   Естествознание. Энциклопедический словарь

  • Специальная теория относительности — Почтовая марка с формулой E = mc2, посвящённая Альберту Эйнштейну, одному из создателей СТО. Специальная теор …   Википедия

  • СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ — (частная теория относительности), (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ) . Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • специальная теория относительности — (частная теория относительности), см. Относительности теория. * * * СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (частная теория относительности), см. Относительности теория (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ) …   Энциклопедический словарь

Книги

  • О теории относительности, В. Л. Гинзбург. Частная и общая теории относительности занимают в современной физике, а также в астрофизике и космологии одно из центральных мест. Статьи, включенные в сборник, посвящены либо непосредственно… Подробнее  Купить за 513 руб


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»