- Абсолютно твёрдое тело
-
Абсолю́тно твёрдое те́ло — второй опорный объект механики наряду с материальной точкой. Механика абсолютно твердого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твердого тела), представляющее большой теоретический и практический интерес.
Существует несколько определений:
- Абсолютно твёрдое тело — модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.
- Абсолютно твёрдое тело — механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.
- Абсолютно твёрдое тело — тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.
- Таким образом, положение абсолютно твердого тела полностью определяется, например, положением жестко привязанной к нему декартовой системы координат (обычно ее начало координат делают совпадающим с центром масс твердого тела).
В трёхмерном пространстве и в случае отсутствия (других) связей абсолютно твёрдое тело обладает 6 степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.
Абсолютно твёрдых тел в природе не существует, однако в очень многих случаях, когда деформация тела мала и ей можно пренебречь, реальное тело может (приближенно) рассматриваться как абсолютно твёрдое тело без ущерба для задачи.
В рамках релятивистской механики понятие абсолютно твёрдого тела внутренне противоречиво, что показывает, в частности, парадокс Эренфеста. Другими словами, модель абсолютно твердого тела вообще говоря совершенно неприменима к случаю быстрых движений (сопоставимых по скорости со скоростью света), а также к случаю очень сильных гравитационных полей [1].
Содержание
Динамика абсолютно твердого тела
Динамика абсолютно твердого тела полностью определяется его полной массой, положением центра масс и тензором инерции (также, как динамика материальной точки — ее массой). (Конечно, имеется в виду, что заданы все внешние силы и внешние связи, которые, конечно, могут зависеть от формы тела или его частей и т.д.).
Другими словами, динамика абсолютно твердого тела при неизменных внешних силах зависит от распределения его масс только через полную массу, центр масс и тензор инерции, в остальном детали распределения масс абсолютно твердого тела никак не скажется на его движении[2]; если как-то так перераспределить массы внутри абсолютно твердого тела, что не изменится центр масс и тензор инерции, движение твердого тела в заданных внешних силах не изменится (хотя при этом могут измениться и как правило изменятся внутренние напряжения в самом твердом теле!).
Частные определения
Абсолютно твёрдое тело на плоскости называется плоским ротатором. Он имеет 3 степени свободы: две поступательные и одну вращательную.
Абсолютно твёрдое тело с одной закреплённой точкой, неспособное вращаться и помещённое в поле тяжести, называется физическим маятником.
Абсолютно твёрдое тело с одной закреплённой точкой, но способное вращаться, называется волчком.
Примечания
- ↑ В некоторых частных случаях (например при быстром движении относительно наблюдателя тела, которое само вращается медленно) модель абсолютно твердого тела может принести пользу: задача сперва решается в ньютоновском приближении в системе отсчета, связанной, например, с центром масс тела, где все движения медленные, а потом с помощью преобразований Лоренца делается пересчет готового решения в систему отсчета наблюдателя. Однако всегда нужна особая осторожность при таком применении, так как вообще говоря при использовании модели абсолютно твёрдого тела в такой ситуации повышен риск получить или явный парадокс, или просто неверный ответ.
- ↑ Случаи, когда (внешние) силы зависят от масс, например, случай (неоднородной) гравитации, в принципе нарушают простое утверждение о независимости динамики абсолютно твердого тела от деталей распределения его массы. Это нарушение устраняется в нашей формулировке оговоркой о неизменности внешних сил. В практических же расчетах всегда можно рассмотреть распределение массы, от которого зависят силы, (например — распределение гравитационной массы в случае тяготения) чисто формально независимым от распределения инертной массы — хотя на самом деле они совпадают; тогда утверждение о независимости динамики от деталей распределения массы формально же касается только второго из них, а не первого.
Литература
- Суслов Г. К. «Теоретическая механика». М., «Гостехиздат» 1946
- Аппель П. «Теоретическая механика» тт. 1,2. М. «Физматгиз» 1960
- Четаев Н. Г. «Теоретическая механика». М. «Наука» 1987
- Маркеев А. П. «Теоретическая механика». М. «Наука» 1999
- Голубев Ю. Ф. «Основы теоретической механики». М., Изд-во Моск. Ун-та, 2000
- Журавлев В. Ф. «Основы теоретической механики». М., «Наука» 2001
Ссылка
В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из-за отсутствия сносок. Вы можете улучшить статью, внеся более точные указания на источники.Категории:- Идеализации в физике
- Теоретическая механика
Wikimedia Foundation. 2010.