Многочлен Чебышева

Многочлен Чебышева

Многочле́ны Чебышёва — две последовательности многочленов \{ T_n(x)\}_{n=0}^{\infty} и \{ U_n(x)\}_{n=0}^{\infty}, названные в честь их первооткрывателя Пафнутия Львовича Чебышёва.

T1, T2, T3, T4, T5

Многочлен Чебышёва первого рода Tn(x) характеризуется как многочлен степени n со старшим коэффициентом 2n - 1, который меньше всего отклоняется от нуля на интервале [ − 1,1].

U1, U2, U3, U4, U5

Многочлен Чебышёва второго рода Un(x) характеризуется как многочлен степени n со старшим коэффициентом 2n, интеграл от абсолютной величины которого по интервалу [ − 1,1] принимает наименьшее возможное значение.

Содержание

Рекурсивное определение

Многочлены Чебышёва первого рода Tn(x) могут быть определены с помощью рекуррентного соотношения:

T_0(x) = 1 \,
T_1(x) = x \,
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x). \,

Многочлены Чебышёва второго рода Un(x) могут быть определены с помощью рекуррентного соотношения:

U_0(x) = 1 \,
U_1(x) = 2x \,
U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x). \,

Явные формулы

Многочлены Чебышёва являются решениями уравнения Пелля:

Tn(x)2 − (x2 − 1)Un − 1(x)2 = 1

в кольце многочленов с вещественными коэффициентами и удовлетворяют тождеству:

T_n(x) + U_{n-1}(x)\sqrt{x^2-1} = (x + \sqrt{x^2-1})^n.

Из последнего тождества также следуют явные формулы:

T_n(x)=\frac{(x+\sqrt{x^2-1})^n+(x-\sqrt{x^2-1})^n}{2} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (x^2-1)^k x^{n-2k};
U_n(x)=\frac{(x+\sqrt{x^2-1})^{n+1}-(x-\sqrt{x^2-1})^{n+1}}{2\sqrt{x^2-1}} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (x^2-1)^k x^{n-2k}.

Тригонометрическое определение

Многочлены Чебышёва первого рода Tn(x) могут быть также определены с помощью равенства:

T_n(\cos(\theta))=\cos(n\theta). \,

или, что почти эквивалентно,

Tn(z) = cos(narccosz)

Многочлены Чебышёва второго рода Un(x) могут быть также определены с помощью равенства:

 U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin\theta}.

Примеры

Несколько первых многочленов Чебышёва первого рода

 T_0(x) = 1 \,
 T_1(x) = x \,
 T_2(x) = 2x^2 - 1 \,
 T_3(x) = 4x^3 - 3x \,
 T_4(x) = 8x^4 - 8x^2 + 1 \,
 T_5(x) = 16x^5 - 20x^3 + 5x \,
 T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1 \,
 T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x \,

Несколько первых многочленов Чебышёва второго рода

 U_0(x) = 1 \,
 U_1(x) = 2x \,
 U_2(x) = 4x^2 - 1 \,
 U_3(x) = 8x^3 - 4x \,
 U_4(x) = 16x^4 - 12x^2 + 1 \,
 U_5(x) = 32x^5 - 32x^3 + 6x \,
 U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1 \,

Свойства

Многочлены Чебышёва обладают следующими свойствами:

  • Ортогональность по отношению к соответствующим скалярному произведению (с весом \frac1\sqrt{1-x^2} для многочленов первого рода и \sqrt{1-x^2} для многочленов второго рода).
  • Среди всех многочленов, значения которых на отрезке [ − 1,1] не превосходят по модулю 1, многочлен Чебышёва имеет:
    • наибольший старший коэффициент
    • наибольшее значение в любой точке a \geq 1
  • Нули полинома Чебышёва являются оптимальными узлами в различных интерполяционных схемах.

Обобщения

Вопрос о многочленах минимальной нормы с фиксированными коэффициентами при двух старших степенях был рассмотрен позднее Золотарёвым, найденные им полиномы носят название многочлены Золотарёва.

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Многочлен Чебышева" в других словарях:

  • Чебышева многочлены — специальная система многочленов, ортогональных с весом [ 1; 1] (см. Ортогональная система функций). Введены в 1854 П. Л. Чебышевым. * * * ЧЕБЫШЕВА МНОГОЧЛЕНЫ ЧЕБЫШЕВА МНОГОЧЛЕНЫ, специальная система многочленов, ортогональных с весом (Чебышева… …   Энциклопедический словарь

  • ЧЕБЫШЕВА МНОГОЧЛЕНЫ — специальная система многочленов, ортогональных с весом (Чебышева многочлен 1 го рода) или с весом (Чебышева многочлен 2 го рода) на отрезке ЧЕБЫШЕВА ПАРАЛЛЕЛОГРАММ плоский 4 звенный шарнирный механизм для воспроизведения движения некоторой точки… …   Большой Энциклопедический словарь

  • ЧЕБЫШЕВА ПОСТОЯННАЯ — числовая характеристика компактного множества Ена комплексной плоскости, употребляемая в теории наилучшего приближения. Пусть К п класс всех многочленов вида степени п, и пусть Существует многочлен для к poro М(tn)= т n, он наз. многочленом… …   Математическая энциклопедия

  • ЧЕБЫШЕВА МНОГОЧЛЕНЫ — первого рода многочлены, ортогональные на отрезке [ 1, 1] с весовой функцией Для стандартизованных Ч. м. справедливы формула и рекуррентное соотношение с помощью к рых находят последовательно T0 (x) = 1, T1(x) = x, Т2 (х)=2х 2 1, T3(x) = 4x3 З х …   Математическая энциклопедия

  • Чебышева многочлены — Многочлены Чебышёва две последовательности многочленов и , названные в честь их первооткрывателя Пафнутия Львовича Чебышёва. T1, T2, T3, T4 …   Википедия

  • ЧЕБЫШЕВА УРАВНЕНИЕ — линейное однородное обыкновенное дифференциальное уравнение 2 го порядка или, в самосопряженной форме, здесь а константа. Ч. у. представляет собой частный случай гипергеометрического уравнения. Точки х= 1 и х=1 являются регулярными особыми… …   Математическая энциклопедия

  • Многочлены Чебышева — Многочлены Чебышева  две последовательности ортогональных многочленов и , названные в честь Пафнутия Львовича Чебышева. Многочлены Чебышева играют важную роль в теории приближений, поскольку корни многочленов Чебышева первого рода… …   Википедия

  • Фильтр Чебышева — Линейные электронные фильтры Фильтр Баттерворта Фильтр Чебышева Эллиптический фильтр Фильтр Бесселя Фильтр Гаусса Фильтр Лежандра Фильтр Габора …   Википедия

  • АЛГЕБРАИЧЕСКИЙ МНОГОЧЛЕН НАИЛУЧШЕГО ПРИБЛИЖЕНИЯ — многочлен, наименее уклоняющийся от заданной функции. Точнее, пусть измеримая функция f(x).интегрируема с р й степенью на множество алгебраич. многочленов степени не выше п. Величину наз. наилучшим приближением, а многочлен, для к рого нижняя… …   Математическая энциклопедия

  • НАИЛУЧШЕГО ПРИБЛИЖЕНИЯ МНОГОЧЛЕН — наилучшего приближения полином, многочлен, осуществляющий наилучшее приближение функции в той или иной метрике среди всех многочленов, построенных по той же (конечной) системе функций. Если X линейное нормированное пространство функций (напр.,… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»