Чебышева многочлены

Чебышева многочлены

Многочле́ны Чебышёва — две последовательности многочленов \{ T_n(x)\}_{n=0}^{\infty} и \{ U_n(x)\}_{n=0}^{\infty}, названные в честь их первооткрывателя Пафнутия Львовича Чебышёва.

T1, T2, T3, T4, T5

Многочлен Чебышёва первого рода Tn(x) характеризуется как многочлен степени n со старшим коэффициентом 2n - 1, который меньше всего отклоняется от нуля на интервале [ − 1,1].

U1, U2, U3, U4, U5

Многочлен Чебышёва второго рода Un(x) характеризуется как многочлен степени n со старшим коэффициентом 2n, интеграл от абсолютной величины которого по интервалу [ − 1,1] принимает наименьшее возможное значение.

Содержание

Рекурсивное определение

Многочлены Чебышёва первого рода Tn(x) могут быть определены с помощью рекуррентного соотношения:

T_0(x) = 1 \,
T_1(x) = x \,
T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x). \,

Многочлены Чебышёва второго рода Un(x) могут быть определены с помощью рекуррентного соотношения:

U_0(x) = 1 \,
U_1(x) = 2x \,
U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x). \,

Явные формулы

Многочлены Чебышёва являются решениями уравнения Пелля:

Tn(x)2 − (x2 − 1)Un − 1(x)2 = 1

в кольце многочленов с вещественными коэффициентами и удовлетворяют тождеству:

T_n(x) + U_{n-1}(x)\sqrt{x^2-1} = (x + \sqrt{x^2-1})^n.

Из последнего тождества также следуют явные формулы:

T_n(x)=\frac{(x+\sqrt{x^2-1})^n+(x-\sqrt{x^2-1})^n}{2} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (x^2-1)^k x^{n-2k};
U_n(x)=\frac{(x+\sqrt{x^2-1})^{n+1}-(x-\sqrt{x^2-1})^{n+1}}{2\sqrt{x^2-1}} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (x^2-1)^k x^{n-2k}.

Тригонометрическое определение

Многочлены Чебышёва первого рода Tn(x) могут быть также определены с помощью равенства:

T_n(\cos(\theta))=\cos(n\theta). \,

или, что почти эквивалентно,

Tn(z) = cos(narccosz)

Многочлены Чебышёва второго рода Un(x) могут быть также определены с помощью равенства:

 U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin\theta}.

Примеры

Несколько первых многочленов Чебышёва первого рода

 T_0(x) = 1 \,
 T_1(x) = x \,
 T_2(x) = 2x^2 - 1 \,
 T_3(x) = 4x^3 - 3x \,
 T_4(x) = 8x^4 - 8x^2 + 1 \,
 T_5(x) = 16x^5 - 20x^3 + 5x \,
 T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1 \,
 T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x \,

Несколько первых многочленов Чебышёва второго рода

 U_0(x) = 1 \,
 U_1(x) = 2x \,
 U_2(x) = 4x^2 - 1 \,
 U_3(x) = 8x^3 - 4x \,
 U_4(x) = 16x^4 - 12x^2 + 1 \,
 U_5(x) = 32x^5 - 32x^3 + 6x \,
 U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1 \,

Свойства

Многочлены Чебышёва обладают следующими свойствами:

  • Ортогональность по отношению к соответствующим скалярному произведению (с весом \frac1\sqrt{1-x^2} для многочленов первого рода и \sqrt{1-x^2} для многочленов второго рода).
  • Среди всех многочленов, значения которых на отрезке [ − 1,1] не превосходят по модулю 1, многочлен Чебышёва имеет:
    • наибольший старший коэффициент
    • наибольшее значение в любой точке a \geq 1
  • Нули полинома Чебышёва являются оптимальными узлами в различных интерполяционных схемах.

Обобщения

Вопрос о многочленах минимальной нормы с фиксированными коэффициентами при двух старших степенях был рассмотрен позднее Золотарёвым, найденные им полиномы носят название многочлены Золотарёва.

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "Чебышева многочлены" в других словарях:

  • ЧЕБЫШЕВА МНОГОЧЛЕНЫ — специальная система многочленов, ортогональных с весом (Чебышева многочлен 1 го рода) или с весом (Чебышева многочлен 2 го рода) на отрезке ЧЕБЫШЕВА ПАРАЛЛЕЛОГРАММ плоский 4 звенный шарнирный механизм для воспроизведения движения некоторой точки… …   Большой Энциклопедический словарь

  • Чебышева многочлены — специальная система многочленов, ортогональных с весом [ 1; 1] (см. Ортогональная система функций). Введены в 1854 П. Л. Чебышевым. * * * ЧЕБЫШЕВА МНОГОЧЛЕНЫ ЧЕБЫШЕВА МНОГОЧЛЕНЫ, специальная система многочленов, ортогональных с весом (Чебышева… …   Энциклопедический словарь

  • ЧЕБЫШЕВА МНОГОЧЛЕНЫ — первого рода многочлены, ортогональные на отрезке [ 1, 1] с весовой функцией Для стандартизованных Ч. м. справедливы формула и рекуррентное соотношение с помощью к рых находят последовательно T0 (x) = 1, T1(x) = x, Т2 (х)=2х 2 1, T3(x) = 4x3 З х …   Математическая энциклопедия

  • Чебышева многочлены —         1) Ч. м. 1 го рода специальная система многочленов последовательно возрастающих степеней. Для n = 0, 1, 2,... определяются формулой:                   В частности, Т0 = 1; T1 = х; T2 = 2x2 ―1; T3 = 4x3 ― 3x; T4 = 8x4 ― 8x2 + 1. Ч. м. Tn… …   Большая советская энциклопедия

  • ЧЕБЫШЕВА МНОГОЧЛЕНЫ — спец. система многочленов, ортогональных с весом 1/корень из (1 х2) (Ч.м. 1 го рода) или с весом корень из (1 х2) (Ч.м. 2 го рода) на отрезке [ 1; 1] (см. Ортогональная система функций). Введены в 1854 П. Л. Чебышевым …   Естествознание. Энциклопедический словарь

  • Многочлены Эрмита — Многочлены Эрмита  определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике. Эти многочлены названы в честь Шарля Эрмита. Содержание 1… …   Википедия

  • Многочлены Полачека — Многочлены Полачека  последовательность многочленов , которые были рассмотрены Полачеком в 1950 году. Рекурсивное определение …   Википедия

  • Многочлены Чебышева — Многочлены Чебышева  две последовательности ортогональных многочленов и , названные в честь Пафнутия Львовича Чебышева. Многочлены Чебышева играют важную роль в теории приближений, поскольку корни многочленов Чебышева первого рода… …   Википедия

  • Многочлены Лежандра — Многочлен Лежандра  многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов… …   Википедия

  • Многочлены Лагерра — В математике, Многочлены Лагерра, названные в честь Эдмона Лагерра (1834 1886), являются каноническими решениями Уравнения Лагерра: являющегося линейным дифференциальным уравнением второго порядка. Многочлены Лагерра также используются в… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»