- ВНЕШНЯЯ МЕРА
- неотрицательная функция множества, обозначаемая , заданная на счетно аддитивном классе множеств, содержащем вместе с множеством любое его подмножество и обладающая свойствами: монотонности, т. е.
счетной полуаддитивности, т. е.
, где - пустое множество.
В. м., заданная на всех подмножествах метрич. пространства, наз. В. м. в смысле Каратеодори, или метрической В. м., если
как только где - расстояние между множествами Xи Y. По данной В. м. может быть выделен класс измеримых множеств, на к-рых становится мерой.
В. м., в частности, возникают при построении продолжения меры с кольца Rна порожденное им а-кольцо.
В классич. теории Лебега меры (см. [1]) внешняя мера множества определяется как нижняя грань мер открытых множеств, содержащих данное множество, а внутренняя мера множества - как верхняя грань мер замкнутых множеств, содержащихся в заданном множестве.
Лит.:[1] Натансон И. П., Теория функций вещественной переменной, 2 изд., М., 1957; [2] Сакс С., Теория интеграла, пер. с англ., М., 1949; [3] Xалмош П., Теория меры, пер. с англ., М., 1953. В. А. Скворцов.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.