ЛИ p-АЛГЕБРА

ЛИ p-АЛГЕБРА

ограниченная алгебра Ли,- алгебра Lнад полем kхарактеристики р>0 (или, более общо, над кольцом простой характеристики р>0), снабженная р-отображением таким, что выполняются следующие соотношения:

Здесь - внутреннее дифференцирование алгебры L, определяемое элементом (оператор присоединенного представления), а элемент из L, являющийся линейной комбинацией одночленов Ли

с xi или у для всех i=l, . . ., р -1.

Типичный пример Ли р-а. получается, если рассмотреть произвольную ассоциативную алгебру Анад kкак универсальную алгебру с двумя производными операциями:

В частности, свойство является прямым следствием тождества

при п=р, когда Так как всякая

Ли алгебра вложима в подходящим образом выбранную ассоциативную алгебру А с операциями i) - ii) ( теорема Пуанкаре - Биркгофа - Витта), то часто х [p] заменяют, с нек-рой долей двусмысленности, на х р.

Для всякой Ли p-a. L существует р-универсальная (ограниченная универсальная) обертывающая ассоциативная алгебрa Up(L). Если dimkL=n, то dimkUp(L)=pn. Это же замечание показывает, что для произвольной алгебры Ли имеет смысл говорить о ее наименьшей р-оболочке, или о р-замыкании.

Обычная подалгебра Ли М(идеал Ли) в Lназ. р-п одалгеброй (р-и д е а л о м), если для всех Гомоморфизм Ли р-а. лаз. р-гомоморфизмом, коль скоро

Если при этом К - линейная Ли р-а. над k, то говорят также о р-представлении алгебры L.

Задание р-структуры на алгебре Ли L с базисом {е 1 е 2, . ..}и нулевым центром Z(L) единственно и вполне определяется заданием образов базисных элементов е i. С другой стороны, коммутативная алгебра Ли L, для к-рой всегда, очевидно, снабжается р-структурой путем рассмотрения пары где - произвольное р-полулинейное отображение


Над алгебраически замкнутым полем kвсякая конечномерная коммутативная Ли р-а. Lразлагается в прямую сумму тора

и нильпотентной подалгебры L1 с тождеством

для достаточно большого т(см. [1]).

Важным источником Ли р-а. служат теория алгебраич. групп, теория формальных групп и теория несепарабельных полей (см. [2]). Алгебра Ли Derk(A).все дифференцирований произвольной алгебры Аявляется р-подалгеброй в Endk(4). Если, в частности,

натянута на дифференцирования с правилом коммутирования

и р-структурой

Этот пример простой Ли р-а. послужил поводом к поискам других простых алгебр. Все известные к настоящему времени (1982) конечномерные простые Ли р-а. над алгебраически замкнутым полем kхарактеристики р > 5 исчерпываются алгебрами классич. типа (вместе с пятью исключительными). Это

и алгебрами картановского типа Размерности последних четырех алгебр равны соответственно и

Все эти алгебры определены над простым подполем поля k, так что неизоморфных простых р-алгебр фиксированной размерности - конечное число (как правило, О, 1 или 2). Недоказанная пока (1982) гипотеза, возникшая в связи с работой [3], заключается в том, что других конечномерных простых Ли р-а. в этом случае не существует. При р=2, 3, 5, однако, ситуация заведомо сложнее.

Лит.:[1] Джекобсон Н..,. Алгебры Ли, пер. с англ., М., 1964; [2] S е l i g m a n G.. В.., Modular Lie algebras, В.- Hdlb.- N. Y., 1967; [3] К о с т р и к и н А. И., Шафаревич И. Р., "Докл. АН СССР", 1966. т. 168, с. 740 - 42: [4] Zassenhaus H., "Harab- Abh.", 1939, Bd 13, S. 1-100.

А. И. Кострикин.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "ЛИ p-АЛГЕБРА" в других словарях:

  • АЛГЕБРА ЛОГИКИ —         система алгебраич. методов решения логич. задач, а также совокупность задач, решаемых такими методами. А. л. в узком смысле слова алгебраич. (табличное, матричное) построение классич. логики высказываний, в котором рассматриваются… …   Философская энциклопедия

  • Алгебра (значения) — Алгебра  раздел математики либо математическая структура специального вида (см. Алгебраическая система) Как раздел математики Абстрактная алгебра Алгебра логики  раздел математической логики. Коммутативная алгебра Линейная алгебра… …   Википедия

  • Алгебра (теория множеств) — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств  это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение …   Википедия

  • Алгебра Хопфа — Алгебра Хопфа  алгебра, являющаяся унитарной ассоциативной коалгеброй и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа. Алгебры Хопфа встречаются в алгебраической топологии, где они возникли в… …   Википедия

  • *-алгебра — (алгебра с инволюцией, алгебра с операцией сопряжения)  ассоциативная алгебра с инволюцией, которая имеет свойства подобные комплексному сопряжению. Содержание 1 * кольцо 2 * алгебра 3 C* алгебра …   Википедия

  • Алгебра Валя — (или Алгебра Валентины)  неассоциативная алгебра M над полем F, в которой бинарная мультипликативная операция подчиняется следующим аксиомам: 1. Условию антисимметричности: для всех . 2. Тождеству Валентины: для всех , где k=1,2,…,6, и …   Википедия

  • АЛГЕБРА — (араб. al djebr восстановление разрозненных частей). Часть математики, рассматривающая общие величины, обозначая их буквами и знаками. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АЛГЕБРА араб. al djebr,… …   Словарь иностранных слов русского языка

  • Алгебра Клини — в теоретической информатике, специальная алгебраическая структура, введённая американским математиком Стивеном Клини, являющаяся обобщением алгебры регулярных выражений. Определение Алгеброй Клини называется алгебра сигнатуры , являющаяся… …   Википедия

  • алгебра логики —         АЛГЕБРА ЛОГИКИ исторически первая форма математической (символической) логики, сложившаяся к последней трети 19 в. К ее созданию привела аналогия между решением алгебраических уравнений и выводом следствий из посылок, а также то, что… …   Энциклопедия эпистемологии и философии науки

  • Алгебра Темперли — Алгебра Темперли  Либа, в статистической механике  алгебра, при помощи которой строятся некоторые трансфер матрицы. Открыты Невиллом Темперли и Эллиотом Либом. Также алгебра применяется в теории интегрируемых моделей, имеет отношение… …   Википедия

  • Алгебра А — Базисом предложенной Крисом Дейтом и Хью Дарвеном Алгебры A являются операции реляционного отрицания (дополнения), реляционной конъюнкции (или дизъюнкции) и проекции (удаления атрибута). Реляционные аналоги логических операций определяются в… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»