- F-тест
-
F-тестом или критерием Фишера (F-критерием, φ*-критерием) — называют любой статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).
Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на "степени свободы"). Чтобы статистика имела распределение Фишера необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение Хи-квадрат. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова.
Тест проводится путем сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если
, то
. Кроме того, квантили распределения Фишера обладают свойством
. Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе - меньшая и сравнение осуществляется с "правой" квантилью распределения. Тем не менее тест может быть и двусторонним и односторонним. В первом случае при уровне значимости
используется квантиль
, а при одностороннем тесте
[1].
Более удобный способ проверки гипотез - с помощью p-значения
- вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если
(для двустороннего теста -
)) меньше уровня значимости
, то нулевая гипотеза отвергается, в противном случае принимается.
Содержание
Примеры F-тестов
F-тест на равенство дисперсий
Две выборки
Пусть имеются две выборки объемом m и n соответственно случайных величин X и Y, имеющих нормальное распределение. Необходимо проверить равенство их дисперсий. Статистика теста
где
- выборочная дисперсия.
Если статистика больше критического, то дисперсии не одинаковы, в противном случае дисперсии выборок одинаковы
Несколько выборок
Пусть выборка объемом N случайной величины X разделена на k групп с количеством наблюдений
в i-ой группе.
Межгрупповая ("объясненная") дисперсия:
Внутригрупповая ("необъясненная") дисперсия:
Данный тест можно свести к тестированию значимости регрессии переменной X на фиктивные переменные-индикаторы групп. Если статистика превышает критическое значение, то гипотеза о равенстве дисперсий в выборках отвергается, в противном случае дисперсии можно считать одинаковыми.
Проверка ограничений на параметры регрессии
Статистика теста для проверки линейных ограничений на параметры классической нормальной линейной регрессии определяется по формуле:
где
-количество ограничений, n-объем выборки, k-количество параметров модели, ESS-сумма квадратов остатков модели,
-коэффициент детерминации, индексы S и L относятся соответственно к короткой и длинной модели (модели с ограничениями и модели без ограничений).
Замечание
Описанный выше F-тест является точным в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов - теста Вальда (W), теста множителей Лагранжа(LM) и теста отношения правдоподобия (LR) - следующим образом:
Все эти статистики асимптотически имеют распределение F(q,n-k), несмотря на то, что их значения на малых выборках могут различаться.
Проверка значимости линейной регрессии
Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. В данном случае нулевая гипотеза - об одновременном равенстве нулю всех коэффициентов при факторах регрессионной модели (то есть всего ограничений k-1). В данном случае короткая модель - это просто константа в качестве фактора, то есть коэффициент детерминации короткой модели равен нулю. Статистика теста равна:
Соответственно, если значение этой статистики больше критического значения при данном уровне значимости, то нулевая гипотеза отвергается, что означает статистическую значимость регрессии. В противном случае модель признается незначимой.
Пример
Пусть оценивается линейная регрессия доли расходов на питание в общей сумме расходов на константу, логарифм совокупных расходов, количество взрослых членов семьи и количество детей до 11 лет. То есть всего в модели 4 оцениваемых параметра (k=4). Пусть по результатам оценки регрессии получен коэффициент детерминации
. По вышеприведенной формуле рассчитаем значение F-статистики в случае, если регрессия оценена по данным 34 наблюдений и по данным 64 наблюдений:
Критическое значение статистики при 1% уровне значимости (в Excel функция FРАСПОБР) в первом случае равно
, а во втором случае
. В обоих случаях регрессия признается значимой при заданном уровне значимости. В первом случае P-значение равно 0,1%, а во втором - 0,00005%. Таким образом, во втором случае уверенность в значимости регрессии существенно выше (существенно меньше вероятность ошибки в случае признания модели значимой).
Проверка гетероскедастичности
См. Тест Голдфелда-Куандта
См. также
- Проверка статистических гипотез
- Статистический критерий
- Тест Вальда
- Тест отношения правдоподобия
- Тест множителей Лагранжа
- Тест Голдфелда-Куандта
Примечания
Внешние ссылки
- Testing utility of model - F-test
- F-test
- Автоматический расчет φ* критерия
- Таблица 15х20 критических значений критерия Фишера (F-критерия) для уровня значимости 0.05
Статистические показатели Описательная
статистикаНепрерывные
данныеКоэффициент сдвига Среднее (Арифметическое, Геометрическое, Гармоническое) · Медиана · Мода · Размах Вариация Ранг · Среднеквадратическое отклонение · Коэффициент вариации · Квантиль (Дециль, Процентиль/Перцентиль/Центиль) Моменты Математическое ожидание · Дисперсия · Асимметрия · Эксцесс Дискретные
данныеЧастота · Таблица контингентности Статистический
вывод и
проверка
гипотезСтатистический
выводДоверительный интервал (Частотная вероятность) · Достоверный интервал (Байесовский вывод) · Статистическая значимость · Мета-анализ Планирование
экспериментаГенеральная совокупность · Планирование выборки · Районированная выборка · Репликация · Группировка · Чувствительность и специфичность Объём выборки Статистическая мощность · Мера эффекта · Стандартная ошибка Общая оценка Байесовская оценка решения · Метод максимального правдоподобия · Метод моментов нахождения оценок · Оценка минимального расстояния · Оценка максимального интервала Статистические
критерииZ-тест · t-критерий Стьюдента · Критерий Фишера · Критерий Пирсона (Хи-квадрат) · Критерий согласия Колмогорова · Тест Вальда · U-критерий Манна — Уитни · Критерий Уилкоксона · Критерий Краскела — Уоллиса · Критерий Кохрена · Критерий Лиллиефорса Анализ выживания Функция выживания · Оценка Каплана — Мейера · Логранк-тест · Интенсивность отказов · Пропорциональная модель опасностей Корреляция Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания Линейные модели Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ Регрессия Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия Столбчатая диаграмма · Совмещённая диаграмма · Диаграмма управления · Лесная диаграмма · Гистограмма · Q-Q диаграмма · Диаграмма выполнения · Диаграмма разброса · Стебель-листья · Ящик с усами Категории:- Статистические критерии
- Эконометрика
- Дисперсионный анализ
Wikimedia Foundation. 2010.