Теория Янга

Теория Янга
Задачи тысячелетия
Равенство классов P и NP
Гипотеза Ходжа
Гипотеза Пуанкаре
Гипотеза Римана
Квантовая теория
Янга — Миллса
Существование и гладкость 
решений уравнений
Навье — Стокса
Гипотеза
Бёрча — Свиннертон-Дайера

Тео́рия Я́нга — Ми́ллса — калибровочная теория с неабелевой калибровочной группой. Калибровочные поля в этой теории называются полями Янга — Миллса. Такие теории были предложены в 1954 году Чж. Янгом и Р. Миллсом[1], однако некоторое время рассматривались лишь как математические изыски, не имеющие отношения к реальности.[2] Несмотря на это, именно на основе теорий Янга — Миллса в 1960—1970-х годах были созданы две краеугольные теории Стандартной модели в физике элементарных частиц: квантовая хромодинамика (теория сильных взаимодействий) на основе группы SU(3) и теория электрослабых взаимодействий на основе группы SU(2).

Содержание

Характерные свойства теорий Янга — Миллса

  • Неабелевость группы означает, что поля-переносчики взаимодействий Янга — Миллса могут взаимодействовать сами с собой и друг с другом. Это влечёт за собой то, что уравнения, описывающие эволюцию полей Янга — Миллса, являются нелинейными (в противоположность линейным уравнениям Максвелла, отвечающим абелевой теории). Можно также сказать, что для полей Янга — Миллса не выполняется принцип суперпозиции.
  • Кванты полей Янга — Миллса являются векторными частицами (то есть бозонами со спином 1) и обладают нулевой массой. Однако с помощью механизма спонтанного нарушения симметрии физические поля Янга — Миллса могут приобретать ненулевую массу.
  • Нелинейность уравнений Янга — Миллса делает их очень сложными для решения. В режиме малой константы связи эти уравнения удается решить приближенно в виде ряда теории возмущений, однако как решить эти уравнения в режиме сильной связи, пока неизвестно. Неизвестно также, как именно эта нелинейность приводит к наблюдаемому в нашем мире конфайнменту в сильных взаимодействиях. Проблема решения уравнений Янга — Миллса в общем случае является одной из семи математических «Проблем тысячелетия», за решение любой из которых Математический институт Клэя[3] присудит премию в 1 миллион долларов США.

Математика

Теории Янга — Миллса — специальный пример калибровочной теории поля с неабелевой калибровочной группы симметрий. Лагранжиан свободного поля Янга — Миллса таких теорий имеет определённый вид

\ \mathcal{L}_\mathrm{gf} = -\frac{1}{4}\operatorname{Tr}(F^2)=- \frac{1}{4}F^{\mu \nu a} F_{\mu \nu}^a,

где F — 2-форма напряжённости поля Янга — Миллса, остающаяся инвариантной при воздействии на вектор-потенциал A^a_\mu калибровочной группы:

\ F_{\mu \nu}^a = \partial_\mu A_\nu^a-\partial_\nu A_\mu^a+gf^{abc}A_\mu^bA_\nu^c,

где под \partial_\mu понимается ковариантная производная в пространстве-времени, в пространстве Минковского в галилеевых координатах сводящаяся к обычной частной производной.

Генераторы алгебры Ли калибровочной группы T^a удовлетворяют соотношению

\ [T^a,T^b]=if^{abc}T^c,

где f^{abc} называются структурными константами группы.

Ковариантные (иногда называемые удлинёнными) производные полей, взаимодействующих через поля Янга — Миллса данной теории, определены как

\ D_\mu=I\partial_\mu-igT^aA^a_\mu

где I — единичный оператор, а g — это константа взаимодействия. В четырехмерном пространстве-времени константа взаимодействия g — это безразмерная величина. Для SU(N) групп a,b,c=1\ldots N^2-1.

Вышеприведённое определение F_{\mu \nu}^a может быть получено, исходя из коммутатора

\ [D_\mu, D_\nu] = -igT^aF_{\mu\nu}^a.

Само поле Янга — Миллса оказывается при этом самодействующим, а получающиеся уравнения движения

\partial^\mu F_{\mu\nu}^a+gf^{abc}A^{\mu b}F_{\mu\nu}^c=0.

называются полулинейными. В случае малой константы связи g<1 в данной теории применима теория возмущений.

Отметим, что переход между «верхним» («контравариантным») и «нижним» («ковариантным») векторными или тензорными компонентами тривиальны для групповых латинских индексов (например, \,f^{abc}=f_{abc}, в групповом пространстве введена евклидова метрика), но нетривиальны для пространственно-временных греческих индексов, которые жонглируются метрикой пространства-времени, в простейшем случае — обычной метрикой Лоренца \eta_{\mu \nu }={\rm diag}\,(+---).

С введением F_{\mu\nu}=T^aF^a_{\mu\nu}, уравнения движения можно переписать так

\, (D^\mu F_{\mu\nu})^a=0.\!

Так как F — 2-форма, то выполняется тождество Бьянки

\ (D_\mu F_{\nu \kappa})^a+(D_\kappa F_{\mu \nu})^a+(D_\nu F_{\kappa \mu})^a=0.

Источник J_\mu^a входит в уравнения движения как

\partial^\mu F_{\mu\nu}^a+gf^{abc}A^{\mu b}F_{\mu\nu}^c=-J_\nu^a .

Обратите внимание, что токи тоже должны правильно меняться при калибровочных преобразованиях.

Приведем здесь некоторые комментарии по поводу физической размерности константы связи. Отметим, что в D измерениях пространства-времени поле масштабируется как [A]=[L^\frac{2-D}{2}] и, таким образом, взаимодействие должно иметь размерность \, [g^2]=[L^{D-4}]. Это означает, что теории Янга — Миллса не перенормируемы для размерностей пространства-времени больше, чем четыре (см. также Антропный принцип). Кроме того, отметим, что для D=4 константа связи безразмерна, а поле и квадрат константы взаимодействия имеют одинаковые размерности с полем и константой взаимодействия теории скалярного безмассового поля с самодействием \phi^4. Таким образом, эти теории имеют одинаковую масштабную инвариантность на классическом уровне.

См. также

Примечания

  1. C. N. Yang, R. Mills (1954). «Conservation of Isotopic Spin and Isotopic Gauge Invariance». Physical Review 96 (1): 191–195. DOI:10.1103/PhysRev.96.191.
  2. См. Предисловие в книге Девитт Б. С. Динамическая теория групп и полей: Пер. с англ. / Под ред. Г. А. Вилковыского. — М.: Наука. Гл. ред. физ.-мат. лит. — 1987. — 288 с.
    репринтное переиздание: Череповец: Меркурий-ПРЕСС, 2000. ISBN 5-11-480064-7.
  3. Clay Mathematics Institute

Wikimedia Foundation. 2010.

Смотреть что такое "Теория Янга" в других словарях:

  • Теория Янга — Миллса — Задачи тысячелетия Равенство классов P и NP Гипотеза Ходжа Гипотеза Пуанкаре Гипотеза Римана Квантовая теория Янга  Миллса Существование и гладкость  решений уравнений Навье Стокса Свиннертона Дайера Теория Ян …   Википедия

  • Теория Янга-Миллса — …   Википедия

  • Квантовая теория Янга — Миллса — Задачи тысячелетия Равенство классов P и NP Гипотеза Ходжа Гипотеза Пуанкаре Гипотеза Римана Квантовая теория Янга  Миллса Существование и гладкость решений уравнений Навье Стокса Гипотеза Берча и Свиннертона Дайера Теория Янга Миллса… …   Википедия

  • Теория струн — Теория суперструн Теория …   Википедия

  • Квантовая теория струн — Взаимодействие в микромире: диаграмма Фейнмана в стандартной модели и её аналог в теории струн Теория струн направление математической физики, изучающее динамику не точечных частиц, как большинство разделов физики, а одномерных протяжённых… …   Википедия

  • КВАНТОВАЯ ТЕОРИЯ ПОЛЯ — теория релятивистских квантовых систем. Возникновение К. т. п. связано с задачами о взаимодействии вещества с излучением и с попытками построения релятивистской квантовой механики [П. Дирак (P.A.M. Dirac, 1927), В. Гейзенберг (W. Heisenberg), В.… …   Математическая энциклопедия

  • КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. — КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:1. Квантовые поля ................. 3002. Свободные поля и корпускулярно волновой дуализм .................... 3013. Взаимодействие полей .........3024. Теория возмущений ............... 3035. Расходимости и… …   Физическая энциклопедия

  • Уравнение Янга-Бакстера — уравнение, относящееся к классу точно решаемых задач. Имеет вид локальных преобразований эквивалентности, которые появляются в самых разнообразных случаях, таких как электрические цепи, теория узлов и теория кос, спиновые системы. Получило своё… …   Википедия

  • Уравнение Янга — Бакстера уравнение, относящееся к классу точно решаемых задач. Имеет вид локальных преобразований эквивалентности, которые появляются в самых разнообразных случаях, таких как электрические цепи, теория узлов и теория кос, спиновые системы.… …   Википедия

  • Калибровочная теория гравитации — Целью построения калибровочной теории гравитации является объединение гравитации с другими фундаментальными взаимодействиями, успешно описываемыми в рамках калибровочной теории. Первая калибровочная модель гравитации была предложена Р. Утиямой в… …   Википедия

Книги

Другие книги по запросу «Теория Янга» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»