Кольцо (теория множеств)

Кольцо (теория множеств)

В теории множеств кольцом называют непустую систему множеств R, замкнутую относительно пересечения и симметрической разности конечного числа элементов. Это значит, что для любых элементов A, B из кольца элементы A \cap  B и A \triangle B тоже будут лежать в кольце.

Содержание

Свойства колец

  • Пустое множество принадлежит любому кольцу (так как \varnothing = A \triangle A).
  • Объединение конечного числа элементов кольца принадлежит кольцу, так как A \cup B = (A \triangle B) \triangle (A \cap B).
  • Разность элементов кольца также принадлежит кольцу, так как A \backslash B = A \triangle (A \cap B).
  • Прямое произведение колец является полукольцом, но не обязано быть кольцом.

Расширения и сужения понятия

Кольцо является частным случаем полукольца. Более того, каждое полукольцо добавлением какого-то количества элементов можно превратить в кольцо. Минимальным кольцом, порождённым данным полукольцом S, называется такое R, что его содержит любое кольцо, содержащее S. Для каждого полукольца S такое R существует и единственно, оно состоит из всевозможных конечных объединений элементов S.

Алгеброй называется кольцо с единицей, то есть таким элементом E, что пересечение E с любым элементом A равно A. Сигма-кольцом называется кольцо, замкнутое относительно счётных объединений элементов, а дельта-кольцом — замкнутое относительно счётных пересечений. Аналогично определяется сигма-алгебра (при этом любая дельта-алгебра является сигма-алгеброй и наоборот).

Примеры

См. также

  • Единица кольца

Wikimedia Foundation. 2010.

Смотреть что такое "Кольцо (теория множеств)" в других словарях:

  • Кольцо - получить на Академике активный купон Spikes или выгодно кольцо купить по низкой цене на распродаже в Spikes

  • Алгебра (теория множеств) — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств  это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение …   Википедия

  • Полукольцо (теория множеств) — Полукольцо (в теории множеств) система множеств S, для которой выполнены следующие условия: ; ; . Таким образом, полукольцо содержит в себе пустое множество, замкнуто относительно пересечения …   Википедия

  • Кольцо — (от древнерусск. «коло»  круг)  круглый объект с отверстием внутри (пример: тор или полноторие). В Викисловаре есть статья «ко …   Википедия

  • Кольцо алгебраическое — Кольцо алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения: 1) множество всех целых положительных …   Большая советская энциклопедия

  • Кольцо (математика) — У этого термина существуют и другие значения, см. Кольцо. В абстрактной алгебре кольцо  это один из наиболее часто встречающихся видов алгебраической структуры. Простейшими примерами колец являются алгебры чисел (целых, вещественных,… …   Википедия

  • Кольцо —         алгебраическое, одно из основных понятий современной алгебры. Простейшими примерами К. могут служить указанные ниже системы (множества) чисел, рассматриваемые вместе с операциями сложения и умножения: 1) множество всех целых положительных …   Большая советская энциклопедия

  • Алгебра множеств — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра множеств в теории множеств  это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы). Содержание 1 Определение …   Википедия

  • ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… …   Энциклопедия Кольера

  • ПУЧКОВ ТЕОРИЯ — специальный математич. аппарат, обеспечивающий единый подход для установления связи между локальными и глобальными свойствами топологич. пространств (в частности, геометрич. объектов) и являющийся мощным средством исследования многих задач в… …   Математическая энциклопедия

  • Арифметика — Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»