Проективное представление группы
- Проективное представление группы
-
Представле́ние гру́ппы, точнее линейное представление группы — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются соответствующие линейные преобразования или их матрицы. То есть, представление группы, G, есть гомоморфизм групп
,
где
обозначает группу автоморфизмов векторного пространства W.
Представление можно понимать как запись группы с помощью матриц или преобразований линейного пространства. Например, унитарная группа U(1) может быть представлена как группа из вращений двухмерного пространства вокруг центра. Смысл использования представлений групп заключается в том, что задачи из теории групп сводятся к более наглядным задачам из линейной алгебры.
Раздел математики, который изучает представления групп, называется теорией представлений групп.
Типы представлений
- Представление группы в пространстве которого есть собственное инвариантное подпространство называется приводимым; в противном случае — неприводимым или простым.
- Если G ― топологическая группа, то под представлением G обычно понимается непрерывное линейное представление группы G в топологическом векторном пространстве.
Вариации и обобщения
В более широком смысле, под представлением группы может пониматься гомоморфизм группы в группу всех обратимых преобразований некоторого множества X. Например:
Wikimedia Foundation.
2010.
Полезное
Смотреть что такое "Проективное представление группы" в других словарях:
Представление группы — У этого термина существуют и другие значения, см. Представление. Не следует путать с заданием группы. Представление группы (точнее, линейное представление группы) гомоморфизм заданной группы в группу невырожденных линейных преобразований… … Википедия
ПРОЕКТИВНОЕ ПРЕДСТАВЛЕНИЕ — группы G гомоморфизм этой группы в группу PGL(V).проективных преобразований проективного пространства P(V), связанного с векторным пространством Vнад полем k. С каждым П. п. ср группы Gсвязано центральное расширение этой группы (*) где р естеств … Математическая энциклопедия
Представление групп — Представление группы, точнее линейное представление группы гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… … Википедия
Линейное представление — Представление группы, точнее линейное представление группы гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… … Википедия
Неприводимое представление — Представление группы, точнее линейное представление группы гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… … Википедия
Приводимое представление — Представление группы, точнее линейное представление группы гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… … Википедия
Простое представление — Представление группы, точнее линейное представление группы гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… … Википедия
ШУРА МУЛЬТИПЛИКАТОР — группы G группа когомологий где мультипликативная группа комплексных чисел с тривиальным действием G. Ш. м. был введен И. Шуром [1] в связи с изучением конечномерных комплексных проективных представлений групп. Если такое представление, то можно… … Математическая энциклопедия
ПУАНКАРЕ ГРУППА — (неоднородная группа Лоренца) группа всех вещественных преобразований 4 век торов пространства Минковского М4 вида где L преобразование из Лоренца группы, а 4 вектор смещения (трансляции). Элемент П. г. обычно обозначается {a, L}, а закон… … Физическая энциклопедия
ОДНОРОДНОЕ ПРОСТРАНСТВО — множество вместе с заданным на нем транзитивным действием нек рой группы. Точнее, Месть однородное пространство группы G, если задано отображение множества в Мтакое, что: 1) 2) 3)для любых существует такой что Элементы множества Мназ. точками О.… … Математическая энциклопедия