Проективное представление группы

Проективное представление группы

Представле́ние гру́ппы, точнее линейное представление группы — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются соответствующие линейные преобразования или их матрицы. То есть, представление группы, G, есть гомоморфизм групп

h:G\to\operatorname{Aut}(W),

где \operatorname{Aut}(W) обозначает группу автоморфизмов векторного пространства W.

Представление можно понимать как запись группы с помощью матриц или преобразований линейного пространства. Например, унитарная группа U(1) может быть представлена как группа из вращений двухмерного пространства вокруг центра. Смысл использования представлений групп заключается в том, что задачи из теории групп сводятся к более наглядным задачам из линейной алгебры.

Раздел математики, который изучает представления групп, называется теорией представлений групп.

Типы представлений

Вариации и обобщения

В более широком смысле, под представлением группы может пониматься гомоморфизм группы в группу всех обратимых преобразований некоторого множества X. Например:


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Проективное представление группы" в других словарях:

  • Представление группы — У этого термина существуют и другие значения, см. Представление. Не следует путать с заданием группы. Представление группы (точнее, линейное представление группы)  гомоморфизм заданной группы в группу невырожденных линейных преобразований… …   Википедия

  • ПРОЕКТИВНОЕ ПРЕДСТАВЛЕНИЕ — группы G гомоморфизм этой группы в группу PGL(V).проективных преобразований проективного пространства P(V), связанного с векторным пространством Vнад полем k. С каждым П. п. ср группы Gсвязано центральное расширение этой группы (*) где р естеств …   Математическая энциклопедия

  • Представление групп — Представление группы, точнее линейное представление группы  гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… …   Википедия

  • Линейное представление — Представление группы, точнее линейное представление группы  гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… …   Википедия

  • Неприводимое представление — Представление группы, точнее линейное представление группы  гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… …   Википедия

  • Приводимое представление — Представление группы, точнее линейное представление группы  гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… …   Википедия

  • Простое представление — Представление группы, точнее линейное представление группы  гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства. Образ этого гомоморфизма сам является группой, элементами которой являются… …   Википедия

  • ШУРА МУЛЬТИПЛИКАТОР — группы G группа когомологий где мультипликативная группа комплексных чисел с тривиальным действием G. Ш. м. был введен И. Шуром [1] в связи с изучением конечномерных комплексных проективных представлений групп. Если такое представление, то можно… …   Математическая энциклопедия

  • ПУАНКАРЕ ГРУППА — (неоднородная группа Лоренца) группа всех вещественных преобразований 4 век торов пространства Минковского М4 вида где L преобразование из Лоренца группы, а 4 вектор смещения (трансляции). Элемент П. г. обычно обозначается {a, L}, а закон… …   Физическая энциклопедия

  • ОДНОРОДНОЕ ПРОСТРАНСТВО — множество вместе с заданным на нем транзитивным действием нек рой группы. Точнее, Месть однородное пространство группы G, если задано отображение множества в Мтакое, что: 1) 2) 3)для любых существует такой что Элементы множества Мназ. точками О.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»