ФУНДАМЕНТАЛЬНАЯ ГРУППА

ФУНДАМЕНТАЛЬНАЯ ГРУППА

группа Пуанкаре,- первая абсолютная гомотопическая группа Пусть / - отрезок [0, 1], - его граница. Элементами Ф. г. пунктированного топологич. пространства (X, х0 )служат гомотопич. классы замкнутых путей в X, т. е. классы гомотопных rel {0, 1} непрерывных отображений пары в (X, x0). Путь s1s2


наз. произведением путей s1 и s2. Гомотопич. класс произведения зависит только от классов сомножителей, возникающая операция, вообще говоря, некоммутативна. Единицей служит класс постоянного отображения в x0, обратным к классу содержащему путь служит класс пути Непрерывному отображению соответствует гомоморфизм


т. е. является функтором на категории топологич. пространств в категорию (неабелевых) групп. Для любого пути соединяющего точки x1 и х 2. определен изоморфизм


зависящий только от гомотопич. класса пути Группа действует автоморфизмами на в случае п -1 элемент действует как внутренний автоморфизм Гомоморфизм Гуревича является эпиморфизмом с ядром (теорема Пуанкаре).
Линейно связное топологич. пространство с нулевой Ф. г. наз. односвязным. Ф. г. произведения пространств изоморфна прямому произведению Ф. г. сомножителей: Пусть ( Х, х 0 )-линейно связное топологич. пространство, - покрытие Xзамкнутой относительно пересечений системой открытых множеств таких, что тогда -прямой предел диаграммы где а индуцировано включением (теорема Зейферта - Ван Кампена). Напр., если дано покрытие, состоящее из U0, U1, U2. и односвязно, то есть свободное произведение групп и В случае клеточного пространства утверждение теоремы справедливо также для замкнутых клеточных подпространств в X.
Для клеточного пространства X, нульмерный остов к-рого состоит из единственной точки х 0,каждая одномерная клетка задает образующую Ф. г. каждая двумерная клетка задает соотношение, отвечающее приклеивающему отображению клетки
Пусть Xобладает покрытием таким, что гомоморфизм включения нулевой для любой точки z. Тогда существует накрытие с В этом случае группа коммутирующих с ргомеоморфизмов пространства на себя (скольжений) изоморфна порядок группы равен мощности слоя р -1 х 0. Для отображения линейно связных пространств такого, что существует поднятие Накрытие наз. универсальным.

Лит.:[1] Масси У., Столлингс Дж., Алгебраическая топология, пер. о англ., М., 1977; [2] Рохлин В. А., Фукс Д. Б., Начальный курс топологии, М., 1977; [3] Спеньер 9., Алгебраическая топология, пер. с англ., М., 1971.
А. В. Хохлов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "ФУНДАМЕНТАЛЬНАЯ ГРУППА" в других словарях:

  • Фундаментальная группа — Фундаментальная группа  определённая группа, которая сопоставляется топологическому пространству. Грубо говоря, эта группа измеряет количество «дырок» в пространстве. Наличие «дырки» определяется невозможностью непрерывно продеформировать… …   Википедия

  • Группа Баумслага — В алгебре, группа Баумслага Солитера   группа с двумя образующими и и одним соотношением Эта группа обычно обозначается . Примеры и свойства это свободн …   Википедия

  • ОРТОГОНАЛЬНАЯ ГРУППА — группа всех линейных преобразований n мерного векторного пространства Vнад полем k, сохраняющих фиксированную невырожденную квадратичную форму Q на V(т. е. таких линейных преобразований j, что Q(jn(v))=Q(v) для любого ). О. г. принадлежит к числу …   Математическая энциклопедия

  • ГАЛУА ГРУППА — группа автоморфизмов Галуа расширения L поля k, т. е. группа, состоящая из всех автоморфизмов поля L, оставляющих все элементы подполя k неподвижными. Г. г. обозначается или . Поле инвариантов совпадает с полем k. Если L поле разложения… …   Математическая энциклопедия

  • АФФИННАЯ ГРУППА — фундаментальная группа преобразований аффинного пространства. А. г. является подгруппой проективной группы и представляется теми проективными преобразованиями, к рые переводят в себя фиксированную гиперплоскость проективного пространства. А. п.… …   Математическая энциклопедия

  • ЛИ ПОЛУПРОСТАЯ ГРУППА — связная группа Ли, не содержащая нетривиальных связных разрешимых (или, что равносильно, связных абелевых) нормальных делителей. Связная группа Ли пелупроста тогда и только тогда, когда ее алгебра Ли полупроста. Связная группа Ли Gназ. п р о с т… …   Математическая энциклопедия

  • Остаточно конечная группа — группа в которой для любого элемента найдётся гомоморфизм в конечную группу такой что . Примеры Любая Конечная группа остаточно конечна; Любая Свободная группа остаточно конечн; Любая Конечно порождённая …   Википедия

  • УОЛЛА ГРУППА — абелева группа, к рая сопоставляется кольцу с инволюцией, являющейся антиизоморфизмом. В частности, она определена для группового кольца где фундаментальная группа пространства. Если X Пуанкаре комплекс, то в этой группе определяются препятствия… …   Математическая энциклопедия

  • МОДУЛЯРНАЯ ГРУППА — группа Г всех дробно линейных преобразований вида где целые рациональные числа. М. г. отождествляется с факторгруппой , и является дискретной подгруппой в группе Ли . Здесь (соответственно ) группа матриц действительные (соответственноцелые)… …   Математическая энциклопедия

  • ДИСКРЕТНАЯ ГРУППА — преобразований группа Г гомеоморфизмов хаусдорфова топологич. пространства X, удовлетворяющая следующему условию: для любых точек х, найдутся такие их окрестно сти U, V соответственно, что множество конечно. Стабилизатор точки относительно Д. г.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»