УОЛЛА ГРУППА

УОЛЛА ГРУППА
- абелева группа, к-рая сопоставляется кольцу с инволюцией, являющейся антиизоморфизмом. В частности, она определена для группового кольца где - фундаментальная группа пространства. Если X - Пуанкаре комплекс, то в этой группе определяются препятствия к существованию простой гомотонич. эквивалентности в классе бордизмов из Это препятствие наз. Уолла инвариантом, см. [1].
Пусть R - кольцо с инволюцией: являющейся антиизоморфизмом, т. е. Если Р - левый R-модуль, то HomR (P, R) является левым R-модулем относительно действия Этот модуль обозначается через Р*. Для конечнопорожденного проективного R-модуля Римеется изоморфизм и можно отождествить Ри Р** по этому изоморфизму.
Квадратичной (-1)k -формой над кольцом с инволюцией R наз. пара где Р - конечнопорожденный проективный R-модуль, а - такой гомоморфизм, что Морфизмом форм наз. гомоморфизм для к-рого Если - изоморфизм, то форма наз. невырожденной. Лагранжевой плоскостью невырожденной формы наз. прямое слагаемое для к-рого Если - прямое слагаемое, и то Lназ. сублагранжевой плоскостью. Лагранжевы плоскости L, G формы наз. дополнительными, если L+G=P и
Пусть L - проективный R-модуль. Невырожденная (-1)k -форма наз. гамильтоновой, а и - ее дополнительными лагранжевыми плоскостями. Если L - лагранжева плоскость формы то она изоморфна гамильтоновой форме Выбор дополнительной к Lлагранжевой плоскости равносилен выбору изоморфизма при к-ром эта дополнительная плоскость отождествляется с L*.
Пусть - абелева группа, порожденная классами эквивалентности (при изоморфизме) невырожденных квадратичных ( -1)k -форм с соотношениями: 1) 2) если имеет лагранжеву плоскость. Тройка (Н; F, L), состоящая из невырожденной (-1)k -формы Ни пары лагранжевых плоскостей F, L, наз. (-1)k -формацией. Формация наз. тривиальной, если Fи Lдополнительны, и элементарной, если существует лагранжева плоскость формы Н, дополнительная и к F, и к L. Тривиальная формация G, G )наз. гамильтоновой. Изоморфизмом формаций наз. изоморфизм форм для к-рого f(F) = Fl, f(L) = L1. Всякая тривиальная формация изоморфна гамильтоновой.
Пусть U2k+1(R)- абелева группа, порожденная классами эквивалентности (при изоморфизме) (-1)k -формаций, со следующими соотношениями:

1)

2) если формация элементарна или тривиальна. Группы Un(R)и наз. группами Уолла кольца R.

Лит.:[1] Wall С. Т. С., Surgery on compact manifolds, L.- N. Y., 1970; [2] Raniсki A., лProc. bond. Math. Soc.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "УОЛЛА ГРУППА" в других словарях:

  • Соединённые Штаты Америки — Соединенные Штаты Америки США, гос во в Сев. Америке. Название включает: геогр. термин штаты (от англ, state государство ), так в ряде стран называют самоуправляющиеся территориальные единицы; определение соединенные, т. е. входящие в федерацию,… …   Географическая энциклопедия

  • Hawkwind — на рок фестивале в Доннингтоне, 1982 год …   Википедия

  • Death Cab for Cutie — На Bonnaroo Musi …   Википедия

  • The Kids Aren't Alright — Эта статья или раздел  грубый перевод статьи на другом языке (см. Проверка переводов). Он мог быть сгенерирован программой переводчиком или сделан человеком со слабыми познаниями в языке оригинала. Вы можете помочь …   Википедия

  • Сиэтл — У этого термина существуют и другие значения, см. Сиэтл (значения). Город Сиэтл англ. Seattle …   Википедия

  • The Walkabouts — Жанры альт рок, альт кантри, фолк рок, инди фолк, хартленд рок, чеймбер поп Годы с 1984 по настоящее время …   Википедия

  • Джобс, Стив — Стив Джобс Steve Jobs …   Википедия

  • Вашингтон (штат) — У этого термина существуют и другие значения, см. Вашингтон. Вашингтон …   Википедия

  • Снейк (река) — У этого термина существуют и другие значения, см. Снейк. Снейк англ. Snake …   Википедия

  • Спокан (Вашингтон) — Город Спокан Spokane …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»