КАРЛЕСОНА ТЕОРЕМА

КАРЛЕСОНА ТЕОРЕМА

для функции из пространства L2(0, 2л) ее ряд Фурье по тригонометрической системе сходится почти всюду. В качестве гипотезы эта теорема была высказана Н. Н. Лузиным [1], доказана Л. Карлесоном [2]. Утверждение К. т. справедливо также для всех функций пространства Lp при р> 1 (см. [3]). То, что для р = 1 это не так, показывает построенный А. Н. Колмогоровым [4] пример функции из L1, тригонометрия, ряд Фурье к-рой почти всюду расходится.

Лит.:[1] Лузин Н. Н., Интеграл и тригонометрический ряд, М., 1915; [2] Carleson L., "Acta math.", 1966, v. 116, p. 135-57 (см. также "Математика", 1967, т. 11, № 4, с. 113- 132); [3] Hunt R., в кн.: Orthogonal expansions and their continuons analogues, Cajbondale - L.- Amst., 1968, p. 235- 255; [4] Колмогоров A. H.,"Fundam. Math.", 1923, t. 4, p. 324-28.

С. А. Теляковский.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "КАРЛЕСОНА ТЕОРЕМА" в других словарях:

  • КОЛМОГОРОВА - СЕЛИВЕРСТОВА ТЕОРЕМА: — если выполнено условие с W(n)=log n, то ряд Фурье сходится почти всюду. Установлена А. Н. Колмогоровым и Г. А. Селиверстовым (см. [1], [2]). В [1] доказано, что можно брать W(n) = log1+dnдля любого d>0, а в [2] было усилено это утверждение:… …   Математическая энциклопедия

  • ФУРЬЕ РЯД — функции f(х)по ортонормированной на промежутке ( а, b )системе функций ряд коэффициенты к рого определяются по формулам и наз. коэффициентами Фурье функции f. О функции f в общем случае предполагается, что она интегрируема с квадратом на ( а, b) …   Математическая энциклопедия

  • ЛУЗИНА ПРОБЛЕМА — 1) Проблема теории тригонометрич. рядов, состоявшая в доказательстве гипотезы Лузина о том, что ряд Фурье каждой измеримой по Лебегу функции f(x), заданной на отрезке [0, 2p]. с конечным интегралом сходится почти всюду на [0, 2p]. Гипотеза… …   Математическая энциклопедия

  • МЕТРИЧЕСКАЯ ТЕОРИЯ ФУНКЦИЙ — раздел теории функций действительного переменного, в к ром свойства функций изучаются на основе понятия меры множества. Исследованиями многих математиков 19 в. была создана новая математич. дисциплина теория функций действительного переменного. К …   Математическая энциклопедия

  • СХОДИМОСТИ МНОЖИТЕЛИ — для функционального ряда числа п=0,1, 2, . . ., такие, что ряд сходится почти всюду на измеримом множестве X, где и п (х) числовые функции, определенные на X. Напр., для тригонометрич. ряда Фурье функции из L1 С. м. являются числа п=2, 3, ... и… …   Математическая энциклопедия

  • Ряд Фурье — Добавление членов ряда Фурье …   Википедия

  • Ряды Фурье — Ряд Фурье  представление произвольной функции f с периодом τ в виде ряда Этот ряд может быть также переписан в виде . где Ak  амплитуда k го гармонического колебания (функции cos),   кру …   Википедия

  • Фурье ряд — Ряд Фурье  представление произвольной функции f с периодом τ в виде ряда Этот ряд может быть также переписан в виде . где Ak  амплитуда k го гармонического колебания (функции cos),   кру …   Википедия

  • ИНТЕРПОЛИРОВАНИЕ — интерполяция, в простейшем, классическом смысле конструктивное восстановление (быть может, приближенное) функции определенного класса по известным ее значениям или значениям ее производных в данных точках. Пусть даны n+l точек сегмента D=[ а, b] …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»