Кэлерово многообразие

Кэлерово многообразие

Кэлерова метрика, — эрмитова метрика на комплексном многообразии, фундаментальная форма ω которой замкнута.

Эрмитова метрика h на комплексном многообразии является кэлеровой тогда и только тогда, когда параллельный перенос вдоль любой кривой (относительно связности Леви-Чивита) является комплексным линейным отображением, т. е. перестановочен умножением на комплексное число.

Примеры

  • Эрмитова метрика \sum_{k=1}^n|dz_k|^2 на пространстве \mathbb C^n.
  • Метрика Фубини — Штуди на комплексном проективном пространстве \mathbb CP^n.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "Кэлерово многообразие" в других словарях:

  • КЭЛЕРОВО МНОГООБРАЗИЕ — комплексное многообразие, на к ром можно ввести Кэлера метрику. Иногда такие многообразия на …   Математическая энциклопедия

  • ОДНОРОДНОЕ КОМПЛЕКСНОЕ МНОГООБРАЗИЕ — комплексное многообразие М, группа автоморфизмов к рого транзитивно действует на М. Все односвязные одномерные комплексные многообразия сфера Римана, комплексная плоскость и верхняя комплексная полуплоскость однородны. Многообразие G/H смежных… …   Математическая энциклопедия

  • ХОДЖА МНОГООБРАЗИЕ — комплексное многообразие, на к ром можно задать метрику Ходжа, т. е. Кэлера метрику, фундаментальная форма к рой определяет целочисленный класс когомологий. Компактное комплексное многообразие является X. м. тогда и только тогда, когда оно… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — один из основных объектов изучения алгебраич. геометрии. Современное определение А. м. над полем kкак приведенной схемы конечного типа над полем kпретерпело длительную эволюцию. Классич. определение А. м. ограничивалось аффинными и проективными… …   Математическая энциклопедия

  • ТОРЕЛЛИ ТЕОРЕМА — обобщения теорема, утверждающая, что структура Ходжа (матрица периодов) в когомологиях алгебраического или кэлерова многообразия Х полностью характеризует поляризованное многообразие X. Классич. Т. т. относится к случаю кривых (см. [1], [2]) и… …   Математическая энциклопедия

  • ЛЕФШЕЦА ТЕОРЕМА — 1) Л. т. о неподвижных точках, Лефшеца Хопфа теорема, теорема, позволяющая выразить число неподвижных точек непрерывного отображения через его Лефшеца число. Так, если непрерывное отображение f: конечного клеточного пространства Xне имеет… …   Математическая энциклопедия

  • ГАРМОНИЧЕСКАЯ ФОРМА — внешняя дифференциальная форма на римановом многообразии М, удовлетворяющая уравнению , где Лапласа оператор, соответствующий римановой метрике на М, а оператор, сопряженный к внешнему дифференциалу d. Если имеет компактный носитель, то… …   Математическая энциклопедия

  • ЛАПЛАСА ОПЕРАТОР — лапласиан, дифференциальный оператор определяемый формулой (здесь координаты в ), а также некоторые его обобщения. Л. о. (1) является простейшим эллиптич. дифференциальным оператором 2 го порядка. Л. о. играет важную роль в математич. анализе,… …   Математическая энциклопедия

  • СИГМА-МОДЕЛИ — ( модели) модели теории поля, в к рых т скалярных полей (i=1, ..., т )могут рассматриваться как задающие отображение d мерного пространства времени (произвольной сигнатуры) в нек рое многообразие М размерности тс метрикой …   Физическая энциклопедия

  • СИМПЛЕКТИЧЕСКАЯ СТРУКТУРА — замкнутая невырожденная дифференциальнаяформа степени 2. Многообразие, снабжённое С. с., наз. симплектическиммногообразием. В каждом касательном пространстве С. с. задаёт кососкалярноепроизведение (см. в ст. Симплектическая группа). Кососкалярное …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»