Термодинамическая энтропия

Термодинамическая энтропия
Термодинамические величины
Thermodynamics navigation image.svg
Статья является частью серии «Термодинамика».
Энтропия
Количество теплоты
Термодинамическая работа
Химический потенциал
См. также: Термодинамические потенциалы.
Разделы термодинамики
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы.

Содержание

Термодинамическое определение энтропии

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение общего количества тепла \Delta Q к величине абсолютной температуры T (то есть тепло, переданное системе, при постоянной температуре):

\Delta S = \frac{\Delta Q}{T}.

Например, при температуре 0 °C, вода может находиться в жидком состоянии и при незначительном внешнем воздействии начинает быстро превращаться в лед, выделяя при этом некоторое количество теплоты. При этом температура вещества так и остается 0 °C. Изменяется состояние вещества, сопровождающееся выделением тепла, вследствие изменения структуры.

Рудольф Клаузиус дал величине S имя «энтропия», происходящее от греческого слова τρoπή, «изменение» (изменение, превращение, преобразование). Данное равенство относится к изменению энтропии, не определяя полностью саму энтропию.

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

dS = \frac{\delta Q}{T},

где dS — приращение (дифференциал) энтропии некоторой системы, а \delta Q — бесконечно малое количество теплоты, полученное этой системой.

Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Поскольку энтропия является функцией состояния, в левой части равенства стоит её полный дифференциал. Напротив, количество теплоты является функцией процесса, в котором эта теплота была передана, поэтому \delta Q считать полным дифференциалом нельзя.

Энтропия, таким образом, согласно вышеописанному, определена вплоть до произвольной аддитивной постоянной. Третье начало термодинамики позволяет определить её точнее: предел величины энтропии равновесной системы при стремлении температуры к абсолютному нулю полагают равным нулю.

Статистическое определение энтропии: принцип Больцмана

В 1877 году Людвиг Больцман установил связь энтропии с вероятностью данного состояния. Позднее эту связь представил в виде формулы Макс Планк:

S=k\cdot\ln(\Omega)

где константа k=1,38·10−23 Дж/К названа Планком постоянной Больцмана, а \Omega — статистический вес состояния, является числом возможных микросостояний (способов) с помощью которых можно перейти в данное макроскопическое состояние. Этот постулат, названный Альбертом Эйнштейном принципом Больцмана, положил начало статистической механике, которая описывает термодинамические системы, используя статистическое поведение составляющих их компонентов. Принцип Больцмана связывает микроскопические свойства системы (\Omega) с одним из её термодинамических свойств (S).

Рассмотрим, например, идеальный газ в сосуде. Микросостояние определено как позиции и импульсы (моменты движения) каждого составляющего систему атома. Связность предъявляет к нам требования рассматривать только те микросостояния, для которых: (I) месторасположения всех частей расположены в рамках сосуда, (II) для получения общей энергии газа кинетические энергии атомов суммируются.

Согласно определению, энтропия является функцией состояния, то есть не зависит от способа достижения этого состояния, а определяется параметрами этого состояния. Так как \Omega может быть только натуральным числом (1, 2, 3, …), то энтропия Больцмана должна быть неотрицательной — исходя из свойств логарифма.

Понимание энтропии как меры беспорядка

Существует мнение, что мы можем смотреть на \Omega и как на меру беспорядка в системе. В определённом смысле это может быть оправдано, потому что мы думаем об «упорядоченных» системах как о системах, имеющих очень малую возможность конфигурирования, а о «беспорядочных» системах как об имеющих очень много возможных состояний. Собственно, это просто переформулированное определение энтропии как числа микросостояний на данное макросостояние.

Рассмотрим, например, распределение молекул идеального газа. В случае идеального газа наиболее вероятным состоянием, соответствующим максимуму энтропии, будет равномерное распределение молекул. При этом реализуется и максимальный «беспорядок», так как при этом будут максимальные возможности конфигурирования.

Границы применимости понимания энтропии как меры беспорядка

Подобное определение беспорядка термодинамической системы как количества возможностей конфигурирования системы фактически дословно соответствует определению энтропии как числа микросостояний на данное макросостояние. Проблемы начинаются в двух случаях:

  • когда начинают смешивать различные понимания беспорядка, и энтропия становится мерой беспорядка вообще;
  • когда понятие энтропии применяется для систем, не являющихся термодинамическими.

В обоих этих случаях применение понятия термодинамической энтропии совершенно неправомерно[1].

Рассмотрим оба пункта подробнее.

Рассмотрим пример термодинамической системы — распределение молекул в поле тяготения. В этом случае наиболее вероятным распределением молекул будет распределение согласно барометрической формуле Больцмана. Другой пример — учёт электромагнитных сил взаимодействия между ионами. В этом случае наиболее вероятным состоянием, соответствующим минимуму свободной энергии (при этом данное состояние не будет соответсвовать максимуму конфигурационной энтропии!), будет упорядоченное кристаллическое состояние, а совсем не «хаос». (Термин «хаос» здесь понимается в смысле беспорядка — в наивном смысле. К хаосу в математическом смысле как сильно неустойчивой нелинейной системе это не имеет отношения, конечно.)

Рассмотрим случай с кристаллической решёткой более подробно. Кристаллическая решётка может быть и в равновесном, и в неравновесном состоянии, как и любая термодинамическая система. Скажем, возьмём следующую модель — совокупность взаимодействующих осцилляторов. Рассмотрим некоторое неравновесное состояние: все осцилляторы имеют одинаковое отклонение от положения равновесия. С течением времени эта система перейдёт в состояние ТД равновесия, в котором отклонения (в каждый момент времени) будут подчинены некоторому распределению типа Максвелла (только это распределение будет для отклонений, и оно будет зависеть от типа взаимодействия осцилляторов). В таком случае максимум энтропии будет действительно реализовывать максимум возможностей конфигурирования, то есть — беспорядок согласно вышеуказанному определению. Но данный «беспорядок» вовсе не соответствует «беспорядку» в каком-либо другом понимании, например, информационному. Такая же ситуация возникает и в примере с кристаллизацией переохлаждённой жидкости, в которой образование структур из «хаотичной» жидкости идёт параллельно с увеличением энтропии.

То есть при образовании кристалла из переохлажденной жидкости энтропия увеличивается с одновременным ростом температуры. Если кристаллизация сопровождается отводом тепла из системы, то энтропия при этом уменьшится.

Это неверное понимание энтропии появилось во время развития теории информации, в связи с парадоксом термодинамики, связанным с мысленным экспериментом т. н. «демона Максвелла». Суть парадокса заключалась в том, что рассматривалось два сосуда с разными температурами, соединённых узкой трубкой с затворками, которыми управлял т. н. «демон». «Демон» мог измерять скорость отдельных летящих молекул, и таким образом избирательно пропускать более быстрые в сосуд с высокой температурой, а более медленные — в сосуд с низкой. Из этого мысленного эксперимента вытекало кажущееся противоречие со вторым началом термодинамики.

Парадокс может быть разрешён при помощи теории информации. Для измерения скорости молекулы «демон» должен был бы получить информацию о её скорости. Но всякое получение информации — материальный процесс, сопровождающийся возрастанием энтропии. Количественный анализ[2] показал, что приращение энтропии при измерении превосходит по абсолютной величине уменьшение энтропии, вызванное перераспределением молекул «демоном».

Энтропия в открытых системах

В силу второго начала термодинамики, энтропия S_i замкнутой системы не может уменьшаться" (закон неубывания энтропии). Математически это можно записать так: dS_i \ge 0 , индекс i обозначает так называемую внутреннюю энтропию, соответствующую замкнутой системе. В открытой системе возможны потоки тепла как из системы, так и внутрь неё. В случае наличия потока тепла в систему приходит количество тепла \delta Q_1 при температуре T_1 и уходит количество тепла \delta Q_2 при температуре T_2. Приращение энтропии, связанное с данными тепловыми потоками, равно:

dS_o = \frac{\delta Q_1}{ T_1}-  \frac{\delta Q_2}{ T_2}.

В стационарных системах обычно \delta Q_1 = \delta Q_2 ,  T_1 > T_2 , так что  dS_o <0 . Поскольку здесь изменение энтропии отрицательно, то часто употребляют выражение «приток негэнтропии», вместо оттока энтропии из системы. Негэнтропия определяется таким образом как "отрицательная энтропия".

Суммарное изменение энтропии открытой системы будет равно:

dS = dS_i  + dS_o .

Если всё время dS >0, то рост внутренней энтропии не компенсируется притоком внешней негэнтропии, система движется к ближайшему состоянию равновесия. Если dS =0, то мы имеем стационарный процесс с неизменной общей энтропией. В этом случае в системе осуществляется некоторая внутренняя работа с генерацией внутренней энтропии, которая преобразует, например, температуру  T_1 внешнего потока тепла в температуру  T_2 уходящего из системы потока тепла.

Измерение энтропии

В реальных экспериментах очень трудно измерить энтропию системы. Техники измерения базируются на термодинамическом определении энтропии и требуют экстремально аккуратной калориметрии.

Для упрощения мы будем исследовать механическую систему, термодинамические состояния которой будут определены через её объем V и давление P. Для измерения энтропии определенного состояния мы должны сперва измерить теплоёмкость при постоянных объёме и давлении (обозначенную CV и CP соответственно), для успешного набора состояний между первоначальным состоянием и требуемым. Тепловые ёмкости связаны с энтропией S и с температурой T согласно формуле:

C_X = T \left(\frac{\partial S}{\partial T}\right)_X

где нижний индекс X относится к постоянным объёму и давлению. Мы можем проинтегрировать для получения изменения энтропии:

\Delta S = \int \frac{C_X}{T} dT

Таким образом, мы можем получить значение энтропии любого состояния (P,V) по отношению к первоначальному состоянию (P0,V0). Точная формула зависит от нашего выбора промежуточных состояний. Для примера, если первоначальное состояние имеет такое же давление, как и конечное состояние, то

 S(P,V) = S(P_0, V_0) + \int^{T(P,V)}_{T(P_0,V_0)} \frac{C_P(P,V(T,P))}{T} dT

В добавление, если путь между первым и последним состояниями лежит сквозь любой фазовый переход первого рода, скрытая теплота, ассоциированная с переходом, должна также учитываться.

Энтропия первоначального состояния должна быть определена независимо. В идеальном варианте выбирается первоначальное состояние как состояние при экстремально высокой температуре, при которой система существует в виде газа. Энтропия в этом состоянии подобна энтропии классического идеального газа плюс взнос от молекулярных вращений и колебаний, которые могут быть определены спектроскопически.

Построение графика изменения энтропии

Следующее уравнение может быть использовано для построения графика изменения энтропии на диаграмме P—V:

 S = n R \ \ln (1 + P^{\frac{C_V}{R}} V^{\frac{C_P}{R}})

Здесь два замечания:

  • это не определение энтропии (но выведено из него);
  • предполагается, что C_V и C_P постоянные, что на самом деле не так.

См. также

Примечания

  1. Frank L. Lambert. A Brief Introduction to the Second Law and to Entropy for Chemistry Students
  2. Бриллюэн Л. Наука и теория информации. — М., 1960.

Литература

  • Осипов А.И., Уваров А.В. Энтропия и ее роль в науке // Сетевой образовательный журнал. — 2004. — Т. 8. — № 1. — С. 70-79.
  • Fermi, E., Thermodynamics, Prentice Hall (1937). — Русский перевод: Ферми, Энрико, Термодинамика, Харьков: Изд-во Харьковского ун-та, 1969. — 140 с.
  • Reif, F., Fundamentals of statistical and thermal physics, McGraw-Hill (1965)
  • Шамбадаль П. Развитие и приложение понятия энтропии. — М.: Наука, 1967. — 280 с.
  • Волькенштейн М. В. Энтропия и информация. — М.: Наука, 1986. — 192 с.

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Термодинамическая энтропия" в других словарях:

  • Энтропия — У этого термина существуют и другие значения, см. Энтропия (значения).     Термодинамические потенциалы …   Википедия

  • Энтропия (теория информации) — Энтропия (информационная)  мера хаотичности информации, неопределённость появления какого либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения. Например, в… …   Википедия

  • ЭНТРОПИЯ — (от греч. entropia поворот, превращение), понятие, впервые введённое в термодинамике для определения меры необратимого рассеяния энергии. Э. широко применяется и в др. областях науки: в статистической физике как мера вероятности осуществления к.… …   Физическая энциклопедия

  • ТЕРМОДИНАМИЧЕСКАЯ ВЕРОЯТНОСТЬ — см. Энтропия. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 …   Геологическая энциклопедия

  • ЭНТРОПИЯ — (от греч. entropia поворот, превраи^ение) англ. entropy; нем. Entropie. 1. Мера внутренней неупорядоченности системы. 2. В кибернетике и теории вероятностей меране определенности случайной величины. 3. В биологических системах термодинамическая… …   Энциклопедия социологии

  • Энтропия — [гр. еп внутрь + (горё превращение] термодинамическая функция состояния системы, мера ее внутренней молекулярно кинетической разупорядоченности или возможности (направленности) осуществления реакций или процессов. [Ушеров Маршак А. В.… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Энтропия — [entropy] термодинамическая величина, функция состояния термодинамической системы, характеризующаяся термодинамической вероятностью реализации данного состояния системы. Разность энтропия в двух состояниях химического равновесия равна… …   Энциклопедический словарь по металлургии

  • Термодинамическая работа — Термодинамические величины …   Википедия

  • термодинамическая система — [thermodynamic system] макроскопическое тело, отделенное от окружающей среды реальными или воображаемыми границами, которое можно охарактеризовать термодинамическими параметрами: объемом, температурой, давлением и др. Различают изолированные,… …   Энциклопедический словарь по металлургии

  • Термодинамическая система — Термодинамика …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»