- Поле разложения
-
По́ле разложе́ния многочлена p над полем
— наименьшее расширение поля, над которым
разлагается в произведение линейных множителей:
При этом
, поэтому о поле
разложения говорят как расширении, полученном присоединением к
всех корней данного многочлена.
Аналогично вводится понятие поля разложения семейства многочленов
— такого расширения L, что каждый pi разлагается в L[x] на линейные множители и L порождается над K всеми корнями pi. Поле разложения конечного множества многочленов p1,p2,...pn, будет, очевидно, полем разложения их произведения p=p1p2...pn
Поля разложения — это в точности то же, что и нормальные расширения
Свойства
- Поле разложения конечного семейства многочленов является конечным алгебраическим расширением поля
.
- Поле разложения многочлена существует для любого семейства многочлена pi и определено однозначно с точностью до изоморфизма, тождественного на K.
Примеры
- Если степень многочлена
не превосходит
, то
.
- Поле комплексных чисел
служит полем разложения многочлена
над полем
вещественных чисел.
- Любое конечное поле
, где
, есть поле разложения многочлена многочлена
над простым подполем
.
Литература
- Ван дер Варден Б.Л. Алгебра -М:, Наука, 1975
- Зарисский О., Самюэль П. Коммутативная алгебра т.1 -М:, ИЛ, 1963
- Ленг С. Алгебра -М:, Мир, 1967
Категории:- Абстрактная алгебра
- Многочлены
- Теория полей
Wikimedia Foundation. 2010.