Эргодическая цепь Маркова

Эргодическая цепь Маркова

Определение

Пусть \{X_n\}_{n \ge 0} - однородная цепь Маркова с дискретным временем и счётным числом состояний. Обозначим

p_{ij}^{(n)} = \mathbb{P} (X_n = j \mid X_0 = i)

переходные вероятности за n шагов. Если существует дискретное распределение \pi = (\pi_1,\pi_2,\ldots )^{\top}, такое что \pi_i > 0,\; i \in \mathbb{N} и

\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots,

то оно называется эргоди́ческим распределе́нием, а сама цепь называется эргоди́ческой.

Основная теорема об эргодических распределениях

Пусть \{X_n\}_{n \ge 0} - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей P = (p_{ij}),\; i,j=1,2,\ldots. Тогда эта цепь является эргодической тогда и только тогда, когда она

  1. неразложима;
  2. положительно возвратна;
  3. апериодична.

Эргодическое распределение \mathbf{\pi} тогда является единственным решением системы:

\sum\limits_{i=0}^{\infty} \pi_i = 1,\; \pi_j \ge 0,\; \pi_j = \sum\limits_{i=0}^{\infty} \pi_i\, p_{ij},\quad \, j\in \mathbb{N}.

См. также


Классификация состояний и цепей Маркова
Состояние: апериодическое | возвратное | достижимое | невозвратное | несущественное | нулевое | периодическое | положительное | сообщающееся | существенное
Цепь: апериодическая | возвратная | невозвратная | неразложимая | нулевая | периодическая | положительная | разложимая | эргодическая

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Эргодическая цепь Маркова" в других словарях:

  • Цепь Маркова — Пример цепи с двумя состояниями Цепь Маркова  последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, го …   Википедия

  • Неразложимая цепь Маркова — Определение Пусть однородная цепь Маркова с дискретным временем. Состояние j называется достижимым из состояния i, если существует n = n(i,j) такое, что . Пишут …   Википедия

  • Периодическая цепь Маркова — Периодическое состояние это такое состояние цепи Маркова, которое навещается цепью только через промежутки времени, кратные фиксированному числу. Период состояния Пусть дана однородная цепь Маркова с дискретным временем с матрицей переходных… …   Википедия

  • Возвратная цепь Маркова — Возвратное состояние это состояние Марковской цепи, посещаемое ею бесконечное число раз. Содержание 1 Определение 2 Критерий возвратности 3 Время возвращения …   Википедия

  • ЭРГОДИЧЕСКАЯ ТЕОРИЯ — Введение Э. т. (метрическая теория динамических систем) раздел теории динамических систем, изучающий их статистич. свойства. Возникновение Э. т. (1 я треть 20 в.) было стимулировано попытками доказать эргодическую гипотезу (термин введён П. и Т.… …   Физическая энциклопедия

  • Маркова цепь — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия

  • Цепь (матем.) — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия

  • МАРКОВА ЦЕПЬ ЭРГОДИЧЕСКАЯ — однородная по времени цепь Маркова x(t), обладающая следующим свойством: существуют (не зависящие от i) величины где переходные вероятности. Распределение {р j} на множестве состояний цепи x(t) наз. стационарным распределением: если при всех j,… …   Математическая энциклопедия

  • МАРКОВА ЦЕПЬ — марковский процесс с конечным или счетным множеством состояний. Теория М. ц. возникла на основе исследований А. А. Маркова, к рый в 1907 положил начало изучению последовательностей зависимых испытаний и связанных с ними сумм случайных величин [1] …   Математическая энциклопедия

  • Цепи Маркова — Цепь Маркова  последовательность случайных событий с конечным или счётным бесконечным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»